Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 106(11): 2808-2816, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35471077

ABSTRACT

Next generation sequencing has been used to identify and characterize the full genome sequence of a cassava-infecting torradovirus, revealing the presence of a Maf/HAM1 domain downstream of the RNA-dependent RNA-polymerase (RdRp) domain in RNA1 in all isolates sequenced. A similar domain is also found in unrelated potyvirids infecting Euphorbiaceae hosts in the Americas and cassava in Africa. Even though cassava torrado-like virus (CsTLV) could not be mechanically transmitted to a series of herbaceous hosts, it can be efficiently transmitted by bud graft-inoculation to different cassava landraces. Our bioassays show that CsTLV has a narrow host range. Crystal-like structures of isometric virus-like particles were observed in cells of plants with single infection by CsTLV, and consistently induced chlorotic leaf spots and affected root yields significantly. Moreover, CsTLV infection induces changes in the accumulation of total sugars in storage roots. Field surveys indicated the presence of CsTLV in the main cassava growing regions of Colombia, and the occurrence of two different cassava-infecting torradovirus species. Profiles of small RNAs of 21 to 24 nucleotides in length, derived from CsTLV RNAs targeted by cassava RNA silencing defense mechanisms, are also reported.


Subject(s)
Manihot , Pyrophosphatases , Plant Diseases , RNA , Colombia
2.
PLoS One ; 16(5): e0252061, 2021.
Article in English | MEDLINE | ID: mdl-34038435

ABSTRACT

Bacterial panicle blight (BPB) caused by Burkholderia glumae is one of the main concerns for rice production in the Americas since bacterial infection can interfere with the grain-filling process and under severe conditions can result in high sterility. B. glumae has been detected in several rice-growing areas of Colombia and other countries of Central and Andean regions in Latin America, although evidence of its involvement in decreasing yield under these conditions is lacking. Analysis of different parameters in trials established in three rice-growing areas showed that, despite BPB presence, severity did not explain the sterility observed in fields. PCR tests for B. glumae confirmed low infection in all sites and genotypes, only 21.4% of the analyzed samples were positive for B. glumae. Climate parameters showed that Montería and Saldaña registered maximum temperature above 34°C, minimum temperature above 23°C, and Relative Humidity above 80%, conditions that favor the invasion model described for this pathogen in Asia. Our study found that in Colombia, minimum temperature above 23°C during 10 days after flowering is the condition that correlates with disease incidence. Therefore, this correlation, and the fact that Montería and Saldaña had a higher level of infected samples according to PCR tests, high minimum temperature, but not maximum temperature, seems to be determinant for B. glumae colonization under studied field conditions. This knowledge is a solid base line to design strategies for disease control, and is also a key element for breeders to develop strategies aimed to decrease the effect of B. glumae and high night-temperature on rice yield under tropical conditions.


Subject(s)
Burkholderia/genetics , Oryza/growth & development , Plant Diseases/microbiology , Tropical Climate , Burkholderia/classification , Colombia , Oryza/microbiology , Plant Diseases/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...