Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Regul Pept ; 101(1-3): 35-41, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11495677

ABSTRACT

The trefoil factor TFF3 is a peptide predominantly produced by mucus-secreting cells in the small and large intestines. It has been implicated in intestinal protection and repair. The mechanisms that govern TFF3 secretion are poorly understood. The aim of this study was, therefore, to evaluate the influence of neurotransmitters, hormonal peptides and mediators of inflammation on the release of TFF3. For this purpose, an isolated vascularly perfused rat colon preparation was used. After a bolus administration of 1 ml isotonic saline into the lumen, TFF3 secretion was induced by a 30-min intra-arterial infusion of the compounds to be tested. TFF3 was evaluated in the luminal effluent using a newly developed radioimmunoassay. TFF3 was barely detected in crude luminal samples. In contrast, dithiothreitol (DTT) treatment of the effluent revealed TFF3 immunoreactivity, which amounted to about 0.3 pmol min(-1) cm(-1) in the basal state. Gel chromatography of DTT-treated luminal samples revealed a single peak that co-eluted with the monomeric form of TFF3. TFF3 was not detected in the portal effluent. Bethanechol (10(-6)-10(-4) M), vasoactive intestinal peptide (VIP, 10(-8)-10(-7) M) or bombesin (10(-8)-10(-7) M) induced a dose-dependent release of TFF3. In contrast, substance P evoked a modest release of TFF3, whereas calcitonin gene-related peptide (CGRP), somatostatin, neurotensin or peptide YY (PYY) did not modify TFF3 secretion. The degranulator compound bromolasalocid, 16,16-dimethyl PGE2 (dmPGE2) or interleukin-1-beta (IL-1-beta) also evoked a marked release of TFF3. In conclusion, TFF3 in the colonic effluent is present in a complex. This association presumably involves a disulfide bond. Additionally, the present results suggest a role for enteric nervous system and resident immune cells in mediation of colonic TFF3 secretion.


Subject(s)
Colon/metabolism , Lasalocid/analogs & derivatives , Mucins , Muscle Proteins , Neuropeptides/pharmacology , Proteins/metabolism , 16,16-Dimethylprostaglandin E2/administration & dosage , 16,16-Dimethylprostaglandin E2/pharmacology , Animals , Bethanechol/administration & dosage , Bethanechol/pharmacology , Bombesin/administration & dosage , Bombesin/pharmacology , Colon/blood supply , Colon/drug effects , Infusions, Intra-Arterial , Interleukin-1/administration & dosage , Interleukin-1/pharmacology , Lasalocid/administration & dosage , Lasalocid/pharmacology , Male , Neuropeptides/administration & dosage , Neurotransmitter Agents/administration & dosage , Neurotransmitter Agents/pharmacology , Peptides , Perfusion , Proteins/immunology , Radioimmunoassay , Rats , Rats, Wistar , Trefoil Factor-3 , Vasoactive Intestinal Peptide/administration & dosage , Vasoactive Intestinal Peptide/pharmacology
2.
Dig Dis Sci ; 46(6): 1223-31, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11414298

ABSTRACT

Mainly composed of mucins, mucus secreted by goblet cells in the intestinal epithelium is critically involved in the protection of the gastrointestinal mucosa. The hypothesis that bile and some bile salts can induce mucus secretion was tested in the isolated perfused rat colon. Mucus release was evaluated using enzyme-linked immunosorbent assays and supported by histological analysis. Luminal administration of bile extract (1%) provoked mucus secretion in the rat colon. Deoxycholate (0.5-10 mM) induced a dose-dependent increase in rat colonic mucus release. Chenodeoxycholate (10 mM) and hyodeoxycholate (10 mM) also evoked mucus discharge, whereas 10 mM cholate, 10 mM ursodeoxycholate, or Tween-20 did not release mucus. Taurine-conjugated bile salts (deoxycholate, hyodeoxycholate, and chenodeoxycholate) were less potent mucus secretagogues than the corresponding unconjugated forms. The deoxycholate-induced mucus discharge was not altered by pharmacological blockers (tetrodotoxin, atropine), indomethacin, mast cell stabilizers (ketotifen, doxantrazole), H1 histamine receptor antagonist (pyrilamine), or 5-HT receptor antagonists (ketanserin, ondansetron, SDZ 205-557). Our findings suggest that some bile salts, especially in the unconjugated form, may provoke colonic mucus secretion, probably through a direct action on mucus-secreting cells.


Subject(s)
Bile Acids and Salts/pharmacology , Colon/drug effects , Colon/metabolism , Mucus/metabolism , Animals , In Vitro Techniques , Male , Perfusion , Rats , Rats, Wistar
4.
J Endocrinol ; 168(1): 177-83, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11139781

ABSTRACT

The secretion of PYY by endocrine L cells of the terminal gut is under the control of nutrients, the autonomic nervous system and hormones. Catecholamines, and the non-specific beta-adrenergic agonist isoproterenol induce PYY secretion from rat isolated colon or ileum. Because beta3-adrenergic receptors now appear to mediate many of the effects of catecholamines in the gastrointestinal tract, we investigated the involvement of beta1-, beta2-, and beta3-adrenoceptor stimulation in PYY secretion from the isolated, vascularly perfused rat colon. Infusion of 10(-6) M isoproterenol induced a transient increase in PYY secretion (from 36+/-4 to 87+/-20 fmol/2 min; n=7, P<0.05), that was abolished by a previous infusion of the beta1- and beta2-adrenergic blocker (and partial beta3-agonist) alprenolol (10(-6) M). The beta1-adrenergic agonist dobutamine and the beta-2 agonist terbutaline also (both at 10(-5) M) significantly stimulated PYY secretion, from 29+/-1 to 79+/-12 fmol/2 min and from 19+/-1 to 73+/-13 fmol/2 min respectively (n=7, P<0.05). Neither of the beta3-adrenergic agonists tested (BRL 37 344 (10(-5), 10(-6) M) and SR 58 611A (10(-6) M)) significantly stimulated PYY secretion, thus confirming the exclusive involvement of beta1- and beta2-receptors in beta-adrenergic agonist induced hormone secretion.


Subject(s)
Colon/metabolism , Peptide YY/metabolism , Receptors, Adrenergic, beta/metabolism , Adrenergic beta-Agonists/pharmacology , Adrenergic beta-Antagonists/pharmacology , Alprenolol/pharmacology , Animals , Colon/drug effects , Dobutamine/pharmacology , Ethanolamines/pharmacology , Isoproterenol/pharmacology , Male , Models, Animal , Organ Culture Techniques , Rats , Rats, Wistar , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-3/metabolism , Statistics, Nonparametric , Terbutaline/pharmacology , Tetrahydronaphthalenes/pharmacology
5.
Am J Physiol Gastrointest Liver Physiol ; 279(5): G925-30, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11052989

ABSTRACT

The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 +/- 1.2 vs. 49 +/- 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 +/- 0.11 vs. 1.3 +/- 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 +/- 1.0 and 34 +/- 0. 8 vs. 47 +/- 1.3 and 43 +/- 1.2%; frequency, 1.4 +/- 0.07 and 1.6 +/- 0.06 vs. 1.1 +/- 0.14 and 1.0 +/- 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.


Subject(s)
Fatty Acids, Volatile/pharmacology , Gastric Emptying/drug effects , Gastric Emptying/physiology , Ileum/metabolism , Peptide YY/metabolism , Peptides/metabolism , Acetates/pharmacology , Animals , Autonomic Denervation , Female , Glucagon-Like Peptide 1 , Ileum/innervation , Pyloric Antrum/drug effects , Pyloric Antrum/physiology , Reflex/drug effects , Reflex/physiology , Swine
6.
J Pineal Res ; 29(2): 116-24, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10981825

ABSTRACT

Melatonin is synthesized during the night by the pineal gland. Recently, melatonin binding sites have been identified in the gut. Despite few studies, the physiological role of melatonin in gut function remains unclear. The objective of the present study was to investigate the effects of melatonin in the regulation of intestinal motility by using the melatonin receptor antagonist S 22153 in rats. Twenty-four male Wistar rats (400 +/- 25 g) were equipped with intraparietal electrodes along the small intestine. Rats were subjected to a 12:12 hr light:dark schedule. During the dark phase, intestinal migrating motor complexes (MMCs) frequency increased (P < 0.05) by 20% in the duodenum and in the jejunum compared with daylight. This effect is due to a significant reduction in the irregular spiking activity (ISA) of MMCs. Concurrently, at night, the duration of the postprandial motor response is reduced by 30% in the duodenum and 50% in the jejunum and ileum. The administration of S 22153 (2 mg/kg sc) at night suppressed these nocturnal variations and restored the daylight values. In contrast, S 22153 was ineffective during daylight whatever the digestive state. Administration of melatonin (1 mg/kg iv) during the preprandial state, 3 hr after light onset, decreased (-80%) the duration of the ISA of MMCs at the three intestinal levels. During the satiety phase, melatonin administered 10 min before or 15 min after food onset induced the appearance of a transitory preprandial-like motor profile in the entire small intestine. In contrast, when administered at the end of the meal it was ineffective. Preprandial and postprandial melatonin effects were prevented by S 22153 pretreatment. In conclusion, these findings reveal, first, that endogenous melatonin is physiologically involved in the pre- and postprandial changes of intestinal motility at night. Second, exogenous melatonin produces pharmacological effects on pre- and postprandial intestinal motility. In both cases, the action of melatonin corresponds to an inhibition of ISA and a reinforcement of the cyclic MMC pattern.


Subject(s)
Gastrointestinal Motility/drug effects , Intestine, Small/metabolism , Melatonin/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Thiophenes/pharmacology , Action Potentials/drug effects , Animals , Circadian Rhythm/drug effects , Circadian Rhythm/physiology , Drug Administration Schedule , Electromyography/drug effects , Injections, Intravenous , Intestine, Small/drug effects , Male , Melatonin/administration & dosage , Myoelectric Complex, Migrating/drug effects , Photoperiod , Postprandial Period/drug effects , Rats , Rats, Wistar , Receptors, Melatonin
7.
Endocrinology ; 141(7): 2594-9, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10875263

ABSTRACT

The intestinal peptide guanylin regulates the electrolyte/water transport in the intestinal epithelium. The aim of the present study was to investigate the mechanisms that modulate its secretion in the isolated vascularly perfused rat colon by using a specific guanylin RIA. Intraarterial infusion of bethanechol (10(-4) M) or bombesin (10(-7) M) elicited a significant 6-fold increase in the release of guanylin immunoreactivity (G-IR) in the lumen. Bombesin-stimulated G-IR secretion was strongly reduced by tetrodotoxin, whereas atropine had no effect. VIP (10(-7) M) induced a moderate release of G-IR, whereas substance P, calcitonin gene-related peptide, peptide YY, somatostatin, and neurotensin were without effect. Dimethyl-PGE2 (1.4 x 10(-5) M) or interleukin-1beta (2.5 x 10(-10) M) induced a 3-fold increase in G-IR in the lumen, whereas the degranulator compound bromolasalocid did not stimulate guanylin secretion. Forskolin (10(-5) M) or sodium nitroprusside (10(-4)-10(-3) M) induced a significant release of G-IR. In contrast, PMA (10(-7) M) or ionophore A23187 (10(-6) M) did not modify basal secretion of G-IR. Upon stimulation of guanylin release with bombesin or bethanechol, an increase in G-IR in the portal effluent was also detected. The release of G-IR in the portal effluent was 40-fold lower than that of G-IR into the luminal perfusate. Additionally, analysis with gel chromatography revealed that the immunoreactive material released in the lumen or in the portal effluent coeluted with the 15-amino acid peptide originally isolated from rat intestine. In conclusion, the present data suggest that the enteric nervous system and immune cells may modulate guanylin release from the rat colon. The release of guanylin in the lumen and portal effluent suggests that this peptide may exert both luminal/paracrine and hormonal effects.


Subject(s)
Colon/metabolism , Gastrointestinal Hormones , Peptides/metabolism , Animals , Blood Vessels/physiology , Chromatography, Gel , Colon/blood supply , Colon/drug effects , In Vitro Techniques , Inflammation Mediators/pharmacology , Male , Natriuretic Peptides , Neurotransmitter Agents/pharmacology , Perfusion , Radioimmunoassay , Rats , Rats, Wistar
8.
Gut ; 46(2): 218-24, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10644316

ABSTRACT

BACKGROUND: Mucins play an important protective role in the colonic mucosa. Luminal factors modulating colonic mucus release have been not fully identified. AIM: To determine the effect of some dietary compounds on mucus discharge in rat colon. METHODS: An isolated vascularly perfused rat colon model was used. Mucus secretion was induced by a variety of luminal factors administered as a bolus of 1 ml for 30 minutes in the colonic loop. Mucin release was evaluated using a sandwich enzyme linked immunosorbent assay supported by histological analysis. RESULTS: The three dietary fibres tested in this study (pectin, gum arabic, and cellulose) did not provoke mucus secretion. Luminal administration of sodium alginate (an algal polysaccharide used as a food additive) or ulvan (a sulphated algal polymer) induced a dose dependent increase in mucin discharge over the concentration range 1-25 mg/l (p<0.05 for 25 mg/l alginate and p<0.05 for 10 and 25 mg/l ulvan). Glucuronic acid and galacturonic acid, which are major constituents of a variety of fibres, produced significant mucin secretion (p<0.05). Hydrogen sulphide and mercaptoacetate, two sulphides produced in the colonic lumen by microbial fermentation of sulphated polysaccharides, did not modify mucin secretion. Among the short chain fatty acids, acetate (5-100 mM) induced a dose dependent release of mucus (p<0.05 for 100 mM acetate). Interestingly, butyrate at a concentration of 5 mM produced colonic mucin secretion (p<0.05), but increasing its concentration to 100 mM provoked a gradual decrease in mucus discharge. Propionate (5-100 mM) did not induce mucin release. Several dietary phenolic compounds (quercetin, epicatechin, resveratrol) did not provoke mucus discharge. CONCLUSIONS: Two algal polysaccharides (alginate and ulvan), two uronic acids (glucuronic acid and galacturonic acid), and the short chain fatty acids acetate and butyrate induce mucin secretion in rat colon. Taken together, these data suggest that some food constituents and their fermentation products may regulate the secretory function of colonic goblet cells.


Subject(s)
Colon/metabolism , Food , Mucins/metabolism , Acetates/pharmacology , Alginates/pharmacology , Analysis of Variance , Animals , Butyrates/pharmacology , Cellulose/pharmacology , Colon/blood supply , Dietary Fiber/pharmacology , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Food Additives/pharmacology , Glucuronic Acid/pharmacology , Gum Arabic/pharmacology , Hexuronic Acids/pharmacology , Hydrogen Sulfide/pharmacology , Male , Mucins/analysis , Pectins/pharmacology , Perfusion , Polysaccharide-Lyases/pharmacology , Rats , Rats, Wistar , Stimulation, Chemical
9.
J Endocrinol ; 162(2): 271-8, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10425466

ABSTRACT

Postprandial release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L cells results from both nutrient transit in the ileal lumen and neural drive of endocrine cells. The adrenosympathetic system and its effectors have been shown to induce secretion of L cells in vivo or in vitro. Because these transmitters act through three receptors, beta, alpha1, alpha2, coupled to different intracellular pathways, we evaluated the responses of L cells to specific agonists, using the model of isolated vascularly perfused rat ileum. General stimulation of adrenergic receptors with epinephrine (10(-7) M) induced significant GLP-1 and PYY secretions (94+/-38 and 257+/-59 fmol/8 min respectively) which were abolished upon propranolol (10(-7) M) pretreatment and strongly decreased upon infusion with 10(-8) M prazosin. Blockade of alpha2-receptors with idazoxan (10(-8) M) did not alter epinephrine-induced peptide secretion. The beta-adrenergic agonist isoproterenol (10(-6) M) infused for 30 min induced a transient release of GLP-1 and PYY (integrated release over the 8 min of the peak secretion: 38+/-16 and 214+/-69 fmol for GLP-1 and PYY respectively, P<0.05). Because terbutaline but not dobutamine or BRL 37,344 (10(-5) M) induced significant GLP-1 and PYY secretions (135+/-30 and 305+/-39 fmol/8 min respectively), isoproterenol-induced secretions are suggested to result mainly from stimulation of the beta2-isoreceptor type. In contrast, the alpha1-agonist phenylephrine (10(-7) M) did not stimulate peptide release. When co-infused with 10(-6) M or 10(-7) M isoproterenol, 10(-7) M phenylephrine raised GLP-1 release to 174+/-53 and 108+/-28 fmol/8 min respectively (vs 38+/-16 and 35+/-10 fmol/8 min for isoproterenol alone, P<0.05) whereas PYY secretion was not significantly increased. Clonidine (10(-7) M), an alpha2-agonist, induced a moderate and delayed increase of GLP-1 and PYY but abolished the isoproterenol-induced peptide secretion. Our results showed that general stimulation of adrenergic receptors stimulates the secretory activity of ileal endocrine L cells. The net peptide secretion results from the activation of the beta2-isoreceptor type. Additionally, GLP-1 and PYY secretions are positively modulated by alpha1-receptor stimulation and inhibited by alpha2-receptor activation upon beta-receptor occupation.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Adrenergic beta-Agonists/pharmacology , Glucagon/metabolism , Peptide Fragments/metabolism , Peptide YY/metabolism , Protein Precursors/metabolism , Animals , Clonidine/pharmacology , Epinephrine/pharmacology , Glucagon-Like Peptide 1 , Isoproterenol/pharmacology , Phenylephrine/pharmacology , Prazosin/pharmacology , Rats , Rats, Wistar
10.
Pflugers Arch ; 438(3): 299-306, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10398859

ABSTRACT

Endocrine L-cells of the distal intestine synthesize both peptide YY (PYY) and proglucagon-derived peptides (PGDPs), whose release has been reported to be either parallel or selective. Here we compare the release mechanisms of PYY, glucagon-like peptide-1 (GLP-1), and oxyntomodulin-like immunoreactivity (OLI) in vivo. Anaesthetized rats were intraduodenally (ID) given either a mixed semi-liquid meal or oleic acid, or they received oleic acid or short chain fatty acids (SCFA) intracolonically (IC). The ID meal released the three peptides with a similar time-course (peak at 30 min); ID oleic acid produced a progressive release of PYY and OLI, while GLP-1 release was less. IC oleic acid or SCFA released smaller (but significant) amounts of PYY but no OLI or GLP-1. Hexamethonium inhibited most of the response to the ID meal and ID oleic acid, but did not change the PYY response to IC oleic acid. NG-nitro-l-arginine methyl ester (l-NAME, a nitric oxide synthase inhibitor) inhibited meal-induced PYY release and left OLI and GLP-1 unaffected. BW10 (a gastrin-releasing peptide antagonist) had no effect on the meal-induced release of either peptide. These results suggest a parallel initial release of PYY, OLI and GLP-1 after the ID meal, or oleic acid, by an indirect mechanism triggered in the proximal bowel, using nicotinic synapses, and involving nitric oxide release for PYY and an unknown mediator for PGDPs. For PYY there is a later phase of peptide release, probably induced by direct contact between nutrients and colonic L-cells.


Subject(s)
Food , Glucagon/metabolism , Peptide YY/metabolism , Protein Precursors/metabolism , Animals , Fatty Acids/administration & dosage , Glucagon-Like Peptide 1 , Glucagon-Like Peptides/metabolism , Hexamethonium/pharmacology , Kinetics , Male , Oleic Acid/administration & dosage , Oxyntomodulin , Peptide Fragments/metabolism , Proglucagon , Rats , Rats, Wistar
11.
Cancer Res ; 59(4): 962-7, 1999 Feb 15.
Article in English | MEDLINE | ID: mdl-10029091

ABSTRACT

The neuropeptide bombesin and its mammalian homologue, gastrin-releasing peptide (GRP), enhance proliferation in some but not all human tumor cell lines. The pathophysiological relevance of the bombesin/GRP receptor (GRP-R), which is expressed in 30% of human colon tumor cell lines and in 24-40% of native tumors, has not been clearly assessed at this time. We studied the effects of bombesin in the recently characterized human colon carcinoma Isreco1 cell line. Competitive reverse transcription-PCR showed a high GRP-R mRNA level in Isreco1 cells, and binding studies confirmed the expression of bombesin/GRP-subtype receptors (Kd = 0.42 nM; Bmax = 18,000 sites/cell). Exposure to bombesin resulted in an increase of intracellular calcium concentrations. Bombesin (1 nM) induced cell spreading at 24 h (21.7+/-1.6% versus 6.4+/-0.8% in control cells; P<0.01) and markedly increased the formation of lamellipodia. In addition, adhesion of Isreco1 cells to collagen I-coated culture dishes was stimulated in the presence of 1 nM bombesin (69+/-6% versus 42+/-1% in control cells; P<0.01). Finally, bombesin significantly increased [3H]thymidine uptake by Isreco1 cells in a dose-dependent manner, with a first significant response at 0.1 nM and a maximal effect at 100 nM bombesin (192.2+/-9.7% of control). These results clearly indicate that bombesin exerts morphological, adhesive, and proliferative effects on Isreco1 cells, suggesting that expression of the bombesin/GRP-R may contribute to the malignant properties of colon carcinoma cells.


Subject(s)
Bombesin/pharmacology , Colonic Neoplasms/pathology , Calcium/metabolism , Cell Adhesion/drug effects , Cell Division/drug effects , Collagen/physiology , DNA/biosynthesis , Humans , Receptors, Bombesin/analysis , Tumor Cells, Cultured
12.
Am J Physiol ; 275(5): G1073-84, 1998 11.
Article in English | MEDLINE | ID: mdl-9815038

ABSTRACT

The effect of potential mediators of mucus secretion was investigated in the isolated vascularly perfused rat colon by using a sandwich enzyme-linked immunosorbent assay for rat colonic mucin and by histochemical analysis. Bethanechol (100-200 microM), bombesin (100 nM), and vasoactive intestinal peptide (VIP, 100 nM) provoked a dramatic mucin discharge (maximal response at 900, 900, and 600% of control loops, respectively). VIP-stimulated mucin secretion was abolished by tetrodotoxin, whereas atropine was without effect. In contrast, both tetrodotoxin and atropine significantly decreased mucin release induced by bombesin. Isoproterenol or calcitonin gene-related peptide was without effect. Serotonin (1-5 microM) and peptide YY (10 nM) evoked mucin discharge, whereas glucagon-like peptide-1 did not release mucin. Finally, bromolasalocid (20 microM), interleukin-1beta (0.25 nM), sodium nitroprusside (1 mM), and dimethyl-PGE2 (2.5 microM) induced mucus discharge. The results demonstrated a good correlation between the immunological method and histological analysis. In conclusion, these findings suggest a role for the enteric nervous system, the enteroendocrine cells, and resident immune cells in mediation of colonic mucus release.


Subject(s)
Colon/physiology , Gastrointestinal Hormones/pharmacology , Intestinal Mucosa/physiology , Mucus/metabolism , Neurotransmitter Agents/pharmacology , 16,16-Dimethylprostaglandin E2/pharmacology , Animals , Atropine/pharmacology , Bethanechol/pharmacology , Bombesin/pharmacology , Calcitonin Gene-Related Peptide/pharmacology , Enteric Nervous System/drug effects , Enteric Nervous System/physiology , Glucagon/pharmacology , Glucagon-Like Peptide 1 , Inflammation , Interleukin-1/pharmacology , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Isoproterenol/pharmacology , Lasalocid/analogs & derivatives , Lasalocid/pharmacology , Male , Mucus/drug effects , Nitroprusside/pharmacology , Peptide Fragments/pharmacology , Peptide YY/pharmacology , Protein Precursors/pharmacology , Rats , Rats, Wistar , Serotonin/pharmacology , Tetrodotoxin/pharmacology , Vasoactive Intestinal Peptide/pharmacology
13.
Horm Res ; 50(3): 183-9, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9762008

ABSTRACT

Receptors for insulin-like growth factors (IGF-I and IGF-II) are expressed in mammalian intestinal epithelium. No information on the presence of IGF receptors in intestinal endocrine cells is available. We tested for IGF-I receptors the endocrine cell line STC-1, which synthesizes and processes cholecystokinin (CCK) among other peptides, and assessed the effects of IGF-I on cell growth and CCK content. Cell monolayers in serum-free culture medium specifically bound [125I]IGF-I. Scatchard analysis was consistent with a single class of high affinity binding sites (KD = 0.91 nM; Bmax = 4,700 sites/cell). In competitive binding assays, unlabeled IGF-I, IGF-II and insulin displaced in a dose-dependent manner [125I]IGF-I binding with the following potencies (KI): IGF-I (0.74 nM) > IGF-II (3 nM) >> insulin (1 microM). Affinity cross-linking with [125I]IGF-I using disuccinimidyl suberate and SDS-PAGE under reducing conditions yielded a polypeptide band with apparent Mr 130,000, consistent with the alpha-subunit of the IGF-I receptor. IGF-I and IGF-II (0.3-30 nM) dose-dependently stimulated [3H]thymidine incorporation, with a maximal response of 110% above basal. IGF-II was approximately 10-fold less potent than IGF-I, suggesting a mediation through IGF-I receptors. In addition, the numbers of cells treated with 3 nM IGF-I amounted to 116, 130 and 159% of control values after 1, 2 and 4 days of incubation, respectively (p < 0.05). A significant increase in the cell CCK contents was observed after a 48-hour exposure to 3 or 30 nM IGF-I. These results demonstrate IGF-I receptor expression by the enteroendocrine cell line STC-1. IGF-I stimulates proliferation in short-term experiments, and increases intracellular levels of CCK.


Subject(s)
Endocrine Glands/metabolism , Intestine, Small/metabolism , Receptor, IGF Type 1/metabolism , Animals , Cell Division/physiology , Cholecystokinin/metabolism , Endocrine Glands/cytology , Insulin-Like Growth Factor I/metabolism , Intestine, Small/cytology , Mice , Tumor Cells, Cultured/metabolism , Tumor Cells, Cultured/pathology
14.
Endocrinology ; 139(9): 3780-6, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9724030

ABSTRACT

Exposure of the ileum to nutrients markedly inhibits several upper gastrointestinal functions. Hormonal peptides of the ileal wall, i.e. peptide YY (PYY), glucagon-like peptide-1 (GLP-1), and neurotensin (NT), are thought to play a role in this negative feedback mechanism. The present study was conducted to comparatively assess the secretion of PYY, GLP-1, and NT upon luminal infusion of a variety of individual luminal factors in the isolated vascularly perfused rat ileum preparation. PYY, GLP-1, and NT were measured in the portal effluent with specific RIAs. Glucose (250 mM) induced a pronounced release of the three peptides, whereas a physiological concentration of 5 mM did not induce peptide secretion. Peptone (5%, wt/vol) evoked a sustained release of PYY, GLP-1, and NT. Only NT secretion was increased upon luminal administration of 100 mM sodium oleate. Short chain fatty acids (20 mM) evoked an early and transient release of the three peptides. In contrast, taurocholate (20 mM) induced a sustained release of PYY, GLP-1, and NT, but the threshold concentration for peptide release was lower for NT than for PYY or GLP-1. Cellulose or pectin (0.5%, wt/vol) did not modify peptide secretion. In conclusion, glucose and peptone are potent stimulants of PYY, GLP-1, and NT release. Only NT is released upon oleic acid stimulation. Finally, taurocholate is a potent stimulant of the release of the three peptides. Overall, PYY, GLP-1, and NT may participate cooperatively in the ileal brake. As relatively high concentrations of the various stimulants were required to elicit peptide release, it seems likely that this mechanism operates in cases of maldigestion or malabsorption.


Subject(s)
Fatty Acids/pharmacology , Glucagon/metabolism , Ileum/metabolism , Neurotensin/metabolism , Peptide Fragments/metabolism , Peptide YY/metabolism , Protein Precursors/metabolism , Taurocholic Acid/pharmacology , Animal Nutritional Physiological Phenomena , Animals , Glucagon-Like Peptide 1 , Ileum/blood supply , Ileum/drug effects , In Vitro Techniques , Male , Perfusion , Rats , Rats, Wistar
15.
Diabetes ; 47(7): 1038-45, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9648826

ABSTRACT

Truncated glucagon-like peptide (GLP)-1 is a potent incretin. Its synthesis and secretion are modulated by food, but the influence of individual nutrients remains to be established. The hypothesis that protein hydrolysates (peptones) can directly regulate both GLP-1 secretion and proglucagon (PG) gene transcription was tested in this study, ex vivo in the isolated vascularly perfused rat intestine and in vitro in the murine enteroendocrine cell line STC-1. Peptones were albumin egg hydrolysate (AEH) and meat hydrolysate (MH). We demonstrate in these two models that peptones dose-dependently stimulate GLP-1 release, whereas isocaloric quantities of bovine serum albumin or of an amino acid mixture had no stimulatory effect. A strong and rapid increase of PG RNA level was observed in STC-1 cells treated with peptones (14-fold and 7-fold increase after 4 h of incubation with 3% wt/vol MH and AEH, respectively). Peptones also increased the PG RNA level in the colonic PG-expressing cell line GLUTag. In contrast, peptones did not modify the PG RNA level in two pancreatic glucagon-producing cell lines, namely, the RINm5F and INR1G9 cells. The peptone effect in STC-1 cells was completely abolished by blocking transcription before MH treatment. The stability of proglugacon transcripts was not modified by MH treatment, but nascent transcripts were more abundant in STC-1 cells preincubated with MH. Finally, MH treatment strongly stimulated (15-fold stimulation) the transcriptional activity of two PG gene promoter fragments (-1100 and -350 base pair) linked to the CAT reporter gene transiently transfected in STC-1 cells. Overall, peptones evoke an as yet undescribed release of GLP-1 when brought into contact with native intestinal L-cells or with STC-1 enteroendocrine cells. The increased transcription of the glucagon gene in the latter system suggests an important role of protein hydrolysates in the control of not only the secretion but also the synthesis of the incretin hormone.


Subject(s)
Enteroendocrine Cells/metabolism , Glucagon/genetics , Glucagon/metabolism , Intestinal Mucosa/metabolism , Peptide Fragments/metabolism , Peptones/pharmacology , Protein Precursors/genetics , Protein Precursors/metabolism , Transcription, Genetic/drug effects , Animals , Cell Line , Culture Media, Conditioned , Dose-Response Relationship, Drug , Enteroendocrine Cells/drug effects , Glucagon-Like Peptide 1 , Intestines/drug effects , Kinetics , Male , Mice , Peptones/administration & dosage , Perfusion , Proglucagon , Promoter Regions, Genetic , RNA/metabolism , Rats , Rats, Wistar , Transfection
16.
J Endocrinol ; 157(1): 33-41, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9614355

ABSTRACT

The neuropeptide galanin is widely distributed in the gastrointestinal tract and exerts several inhibitory effects, especially on intestinal motility and on insulin release from pancreatic beta-cells. The presence of galanin fibres not only in the myenteric and submucosal plexus but also in the mucosa, prompted us to investigate the regulatory role of galanin, and its mechanism of action, on the secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1). Rat ileal cells were dispersed through mechanical vibration followed by moderate exposure to hyaluronidase, DNase I and EDTA, and enriched for L-cells by counterflow elutriation. A 6- to 7-fold enrichment in GLP-1 cell content was registered after elutriation, as compared with the crude cell preparation (929 +/- 81 vs 138 +/- 14 fmol/10(6) cells). L-cells then accounted for 4-5% of the total cell population. Bombesin induced a time-(15-240 min) and dose- (0.1 nM-1 microM) dependent release of GLP-1. Glucose-dependent insulinotropic peptide (GIP, 100 nM), forskolin (10 microM) and the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA, 1 microM) each stimulated GLP-1 secretion over a 1-h incubation period. Galanin (0.01-100 nM) induced a dose-dependent inhibition of bombesin- and of GIP-stimulated GLP-1 release (mean inhibition of 90% with 100 nM galanin). Galanin also dose-dependently inhibited forskolin-induced GLP-1 secretion (74% of inhibition with 100 nM galanin), but not TPA-stimulated hormone release. Pretreatment of cells with 200 ng/ml pertussis toxin for 3 h, or incubation with the ATP-sensitive K+ channel blocker disopyramide (200 microM), prevented the inhibition by galanin of bombesin- and GIP-stimulated GLP-1 secretion. These studies indicate that intestinal secretion of GLP-1 is negatively controlled by galanin, that acts through receptors coupled to pertussis toxin-sensitive G protein and involves ATP-dependent K+ channels.


Subject(s)
GTP-Binding Proteins/metabolism , Galanin/physiology , Glucagon/metabolism , Ileum/metabolism , Peptide Fragments/metabolism , Potassium Channels/metabolism , Protein Precursors/metabolism , Animals , Bombesin/pharmacology , Cells, Cultured , Colforsin/pharmacology , Disopyramide/pharmacology , Dose-Response Relationship, Drug , Galanin/pharmacology , Gastric Inhibitory Polypeptide/pharmacology , Glucagon-Like Peptide 1 , Ileum/drug effects , Immunohistochemistry , Male , Microscopy, Fluorescence , Pertussis Toxin , Rats , Rats, Wistar , Tetradecanoylphorbol Acetate/pharmacology , Virulence Factors, Bordetella/pharmacology
17.
Biochem J ; 331 ( Pt 1): 129-35, 1998 Apr 01.
Article in English | MEDLINE | ID: mdl-9512470

ABSTRACT

Bombesin has been reported to stimulate cholecystokinin (CCK) secretion from rat duodeno-jejunal I-cells. Bombesin was shown to activate mitogen-activated protein kinases (MAPKs) in cell types such as Swiss 3T3 fibroblasts and rat pancreatic acinar cells. No information is available on whether MAPK is activated in intestinal endocrine cells upon bombesin stimulation. This was studied by using the CCK-producing enteroendocrine cell line STC-1. Bombesin stimulated markedly and transiently both p42(MAPK) and p44(MAPK), with a maximum at 2 min, and a decrease to basal levels within 10 min. As expected, bombesin stimulated MAPK kinase 1 (MEK-1) activity. Activation of protein kinase C (PKC) with PMA also stimulated p42(MAPK), p44(MAPK) and MEK-1. Treatment of cells with PD 098059 (at 10 microM or 30 microM), which selectively inhibits MEK phosphorylation, blocked bombesin-induced p42(MAPK) and p44(MAPK) activation for at least 90 min. However, PD 098059 inhibited bombesin- and PMA-stimulated CCK secretion during the first 15 min, but failed to significantly reduce CCK release at later times. Inhibition of PKC with staurosporine, or PKC down-regulation by prolonged treatment with PMA, both drastically decreased MEK-1, p42(MAPK) and p44(MAPK) activation upon bombesin stimulation. Additionally, PKC activation appeared to be required for both MAPK-dependent (early) and -independent (late) CCK responses to bombesin. It is concluded that the early CCK secretory response of STC-1 cells to bombesin involves MAPK pathway activation through a PKC-dependent mechanism, whereas the late phase of bombesin-induced CCK secretion, that also requires PKC, appears to result from a MAPK-independent process.


Subject(s)
Bombesin/pharmacology , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cholecystokinin/metabolism , Intestinal Mucosa/metabolism , Mitogen-Activated Protein Kinase Kinases , Signal Transduction/drug effects , 3T3 Cells , Animals , Endocrine System/metabolism , MAP Kinase Kinase 1 , Mice , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Tumor Cells, Cultured
18.
FEBS Lett ; 425(1): 66-70, 1998 Mar 20.
Article in English | MEDLINE | ID: mdl-9541008

ABSTRACT

In neurons, synaptic vesicle exocytosis involves the formation of a core complex particle including syntaxin-1, synaptosomal-associated protein of 25 kDa (SNAP-25) and vesicle-associated membrane protein (VAMP)-2/synaptobrevin. The expression of these proteins was investigated in a panel of cell lines, including lines of endocrine and intestinal origin, by Western blotting and/or immunocytochemistry. The three core complex proteins were detected in the enteroendocrine, cholecystokinin (CCK)-secreting, cell lines STC-1 and GLUTag, and in the endocrine non-intestinal cell lines CA-77 and HIT-T15. In contrast, SNAP-25 and syntaxin-1 were undetected in the intestinal non-endocrine cell lines IEC-6, HT-29 and Caco-2, whereas a slight expression of VAMP-2 was documented in IEC-6 and HT-29 cells. Co-immunoprecipitation experiments indicated that syntaxin-1, SNAP-25 and VAMP-2 were present in a complex similar to that identified in brain. In the STC-1 cell line, treatment of streptolysin-O-permeabilized cells with tetanus toxin (Tetx) selectively cleaved VAMP-2 and VAMP-3/cellubrevin, and simultaneously abolished Ca2+-induced CCK secretion (IC50 approximately 12 nM). These results show that endocrine cell lines of intestinal origin express syntaxin-1, SNAP-25 and VAMP-2, and suggest a key role for a Tetx-sensitive protein (for example VAMP-2 and/or VAMP-3) in the CCK secretion by STC-1 cells.


Subject(s)
Cholecystokinin/metabolism , Endocrine Glands/metabolism , Intestinal Mucosa/metabolism , Membrane Proteins/metabolism , Tetanus Toxin/pharmacology , Animals , Calcium/metabolism , Cell Line , Cricetinae , Endocrine Glands/cytology , Humans , Hydrolysis , Intestines/cytology , Mice , Rats
19.
Endocrinology ; 139(3): 932-8, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9492022

ABSTRACT

Peptones are potent stimulants of cholecystokinin (CCK) release in rats, both in vivo and ex vivo in a model of isolated vascularly perfused duodeno-jejunum preparation and in vitro in the intestinal CCK-producing cell line STC-1. The underlying mechanisms were here investigated with this cell line. Protein hydrolysates from various origins (meat, casein, soybean, and ovalbumin; 0.5-1%, wt/vol) dose dependently increased CCK release. Cephalosporin antibiotics, which mimic tripeptides, also stimulated the release of CCK over the concentration range 1-20 mM. The study of concentration dependence of cephalosporin uptake indicated a passive diffusion process at either pH 7.4 or pH 6.0, thus arguing against the involvement of a peptide transporter in CCK secretion. After pertussis toxin treatment (200 ng/ml; 5 h), the peptone- and cephalexin-induced CCK secretion was significantly reduced, suggesting the involvement of pertussis toxin-sensitive heterotrimeric G protein(s) in the secretory activity of STC-1 cells. Consistent with this was the identification by Western blot of G(i2)alpha, G(i3)alpha, and G(o)alpha immunoreactivities in STC-1 cell extracts. Additionally, peptones and cephalexin increased the cellular content in inositol phosphates, whereas a mild increase in cAMP content was restricted to peptone-treated cells. Protein kinase A or C inhibition did not modify peptone- or antibiotic drug-evoked CCK release. The extracellular Ca2+ chelator EGTA (500 microM) and the intracellular Ca2+ chelator BAPTA-AM [1,2-bis-(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester; 20 microM] abolished the peptone- and antibiotic drug-induced CCK release. Nifedipine and verapamil (10 microM) reduced by about 50% the CCK secretion evoked by these two secretagogues. In conclusion, peptones and some cephalosporins are potent stimulants of CCK release in the STC-1 cell line. The cellular mechanisms involve pertussis toxin-sensitive G protein(s) and are dependent on Ca2+ availability. We suggest that the STC-1 cell line is a useful model to study the molecular basis of peptone-induced CCK secretion.


Subject(s)
Cephalosporins/pharmacology , Cholecystokinin/metabolism , Intestines/drug effects , Peptones/pharmacology , Animals , Calcium/metabolism , Cell Line , Cephalexin/pharmacology , Cyclic AMP/biosynthesis , GTP-Binding Proteins/physiology , Mice , Pertussis Toxin , Virulence Factors, Bordetella/pharmacology
20.
Endocrinology ; 138(3): 1137-44, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9048620

ABSTRACT

In rats, protein hydrolysates (peptones) stimulate cholecystokinin (CCK) release both in vivo and in a model of isolated vascularly perfused duodeno-jejunum. However, the mechanisms involved in peptone-induced stimulation of CCK cells are not well understood. In particular, the possibility that peptones may directly interact with CCK-producing cells to stimulate CCK release and gene transcription has not yet been examined. To test this hypothesis, we used the enteroendocrine cell line STC-1. Incubation of STC-1 cells for 2 h with albumin egg hydrolysate over the concentration range 0.01-1% (wt/ vol) caused a dose-dependent release of CCK, with a maximal increase at 1420% of the control value. In contrast, BSA (1%, wt/vol) or a mixture of amino acids (1%, wt/vol) induced a modest rise in CCK secretion. A dose-dependent, hydrolysate-specific, increase in the CCK steady state RNA level was also observed. It was detectable by 2-4 h of peptone treatment and sustained until 24-48 h. Peptones did not increase the CCK RNA level in the colonic CCK-producing cell line GLUTag or in nonintestinal CCK-expressing cell lines, namely the pancreatic cell line RINm5F and the medullar thyroid carcinoma cell line CA77. The peptone-induced increase in the CCK RNA level resulted from enhanced gene transcription, because labeled CCK transcripts from nuclear run-on incubations increased 3-fold when cells were incubated with peptones, whereas the level of beta-actin transcripts was not modified. Finally, peptones dose-dependently stimulated the transcriptional activity of an 800-bp fragment of CCK gene promoter transfected in STC-1 cells. These studies indicate that peptones specifically stimulate CCK secretion and gene transcription in the intestinal cell line STC-1, and that cis-acting elements conferring peptone inducibility are located in the first 800 bp of the 5'-flanking region of the CCK gene.


Subject(s)
Cholecystokinin/genetics , Cholecystokinin/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/physiology , Peptones/pharmacology , Transcription, Genetic/drug effects , Animals , Cell Line , Dose-Response Relationship, Drug , Homeostasis , Intestinal Mucosa/cytology , Mice , Promoter Regions, Genetic/drug effects , RNA/metabolism , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...