Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ear Hear ; 43(6): 1771-1782, 2022.
Article in English | MEDLINE | ID: mdl-35733244

ABSTRACT

OBJECTIVES: Today, approximately 70 to 80% of hearing aid fittings are made with silicone instant ear tips rather than custom earmolds. Nevertheless, little is known about the impact of instant ear tips on the acoustic coupling between the hearing aid receiver and the individual ear canal, even though it can have a major impact on the overall sound of the hearing aids. This study aimed to investigate the acoustic properties of different instant ear tip types and their across-subject variability, the within-subject reliability of those properties, and the influence of the users' level of experience with ear-tip insertion on the acoustics. Furthermore, subjective ratings of occlusion produced by the ear tips were considered. DESIGN: Five types of instant ear tips (Open, Tulip, Round [2-vent], Round [1-vent], Double Domes) provided by the hearing aid manufacturer Widex were considered in this study. Probe-microphone measurements were performed at the eardrums of 30 participants (60 ears). In the first experiment, the real ear occluded insertion gain and the vent effect (VE) were measured, and the listeners rated the subjective occlusion experienced with each ear tip. In the second experiment, the same measurements were repeated six times per participant. The within-subject variability of the acoustic ear tip properties was investigated as well as the impact of the degree of users' experience with ear tip insertion on the resulting real ear measurements. RESULTS: All tested ear tips were, on average, acoustically transparent up to 1 kHz except Double Domes, which were only transparent up to 600 Hz. Distinct VE profiles were found for each ear tip type, but a large across-subject variability was observed for both real ear occluded insertion gain and VE. However, the within-subject reliability was high. The measured VE was highly correlated with the perceived occlusion. Finally, no significant effect of the level of experience in ear tip insertion on the acoustic properties of the ear tips was found, but the within-subject variability was larger in the less experienced group. CONCLUSIONS: These results suggest that the acoustic properties of instant ear tips and their coupling to the individual ear canal impact the resulting hearing aid fitting and should be considered by the hearing care professionals and reflected in the fitting software. The high within-subject reliability indicates that the ear tip acoustics remain stable for the individual in daily use. Finally, real ear measurements should be considered an essential part of the hearing aid fitting process in clinical practice to ensure an optimal fit for the individual hearing aid user.


Subject(s)
Hearing Aids , Humans , Reproducibility of Results , Prosthesis Fitting/methods , Hearing , Acoustics , Silicones
2.
J Acoust Soc Am ; 144(5): 2896, 2018 11.
Article in English | MEDLINE | ID: mdl-30522291

ABSTRACT

Cubick and Dau [(2016). Acta Acust. Acust. 102, 547-557] showed that speech reception thresholds (SRTs) in noise, obtained with normal-hearing listeners, were significantly higher with hearing aids (HAs) than without. Some listeners reported a change in their spatial perception of the stimuli due to the HA processing, with auditory images often being broader and closer to the head or even internalized. The current study investigated whether worse speech intelligibility with HAs might be explained by distorted spatial perception and the resulting reduced ability to spatially segregate the target speech from the interferers. SRTs were measured in normal-hearing listeners with or without HAs in the presence of three interfering talkers or speech-shaped noises. Furthermore, listeners were asked to sketch their spatial perception of the acoustic scene. Consistent with the previous study, SRTs increased with HAs. Spatial release from masking was lower with HAs than without. The effects were similar for noise and speech maskers and appeared to be accounted for by changes to energetic masking. This interpretation was supported by results from a binaural speech intelligibility model. Even though the sketches indicated a change of spatial perception with HAs, no direct link between spatial perception and segregation of talkers could be shown.


Subject(s)
Auditory Perception/physiology , Hearing Aids/adverse effects , Hearing/physiology , Speech Intelligibility/physiology , Adult , Auditory Threshold , Australia/epidemiology , Female , Humans , Male , Noise , Perceptual Masking , Persons With Hearing Impairments/rehabilitation , Persons With Hearing Impairments/statistics & numerical data , Population Groups , Space Perception/physiology , Speech Perception/physiology
3.
Sci Rep ; 6: 37342, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27853290

ABSTRACT

In day-to-day life, humans usually perceive the location of sound sources as outside their heads. This externalized auditory spatial perception can be reproduced through headphones by recreating the sound pressure generated by the source at the listener's eardrums. This requires the acoustical features of the recording environment and listener's anatomy to be recorded at the listener's ear canals. Although the resulting auditory images can be indistinguishable from real-world sources, their externalization may be less robust when the playback and recording environments differ. Here we tested whether a mismatch between playback and recording room reduces perceived distance, azimuthal direction, and compactness of the auditory image, and whether this is mostly due to incongruent auditory cues or to expectations generated from the visual impression of the room. Perceived distance ratings decreased significantly when collected in a more reverberant environment than the recording room, whereas azimuthal direction and compactness remained room independent. Moreover, modifying visual room-related cues had no effect on these three attributes, while incongruent auditory room-related cues between the recording and playback room did affect distance perception. Consequently, the external perception of virtual sounds depends on the degree of congruency between the acoustical features of the environment and the stimuli.

SELECTION OF CITATIONS
SEARCH DETAIL
...