Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1278041, 2023.
Article in English | MEDLINE | ID: mdl-38156314

ABSTRACT

Babesia divergens is an emerging tick-borne pathogen considered as the principal causative agent of bovine babesiosis in Europe with a notable zoonotic risk to human health. Despite its increasing impact, considerable gaps persist in our understanding of the molecular interactions between this parasite and its hosts. In this study, we address the current limitation of functional genomic tools in B. divergens and introduce a stable transfection system specific to this parasite. We define the parameters for a drug selection system hdhfr-WR99210 and evaluate different transfection protocols for highly efficient generation of transgenic parasites expressing GFP. We proved that plasmid delivery into bovine erythrocytes prior to their infection is the most optimal transfection approach for B. divergens, providing novel evidence of Babesia parasites' ability to spontaneously uptake external DNA from erythrocytes cytoplasm. Furthermore, we validated the bidirectional and symmetrical activity of ef-tgtp promoter, enabling simultaneous expression of external genes. Lastly, we generated a B. divergens knockout line by targeting a 6-cys-e gene locus. The observed dispensability of this gene in intraerythrocytic parasite development makes it a suitable recipient locus for further transgenic application. The platform for genetic manipulations presented herein serves as the initial step towards developing advanced functional genomic tools enabling the discovery of B. divergens molecules involved in host-vector-pathogen interactions.


Subject(s)
Babesia , Babesiosis , Humans , Babesia/genetics , Babesiosis/parasitology , Transfection , Gene Targeting , Erythrocytes/parasitology
2.
Front Cell Infect Microbiol ; 11: 669088, 2021.
Article in English | MEDLINE | ID: mdl-34268135

ABSTRACT

The human malaria parasite Plasmodium falciparum expresses variant PfEMP1 proteins on the infected erythrocyte, which function as ligands for endothelial receptors in capillary vessels, leading to erythrocyte sequestration and severe malaria. The factors that orchestrate the mono-allelic expression of the 45-90 PfEMP1-encoding var genes within each parasite genome are still not fully identified. Here, we show that the transcription factor PfAP2-O influences the transcription of var genes. The temporary knockdown of PfAP2-O leads to a complete loss of var transcriptional memory and a decrease in cytoadherence in CD36 adherent parasites. AP2-O-knocked-down parasites exhibited also significant reductions in transmission through Anopheles mosquitoes. We propose that PfAP2-O is, beside its role in transmission stages, also one of the virulence gene transcriptional regulators and may therefore be exploited as an important target to disrupt severe malaria and block parasite transmission.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Animals , Erythrocytes , Humans , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Sexual Development , Transcription Factors/genetics , Transcription, Genetic , Virulence/genetics
3.
Sci Rep ; 8(1): 1038, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348637

ABSTRACT

Malaria, caused by parasites of the genus Plasmodium, leads to over half a million deaths per year, 90% of which are caused by Plasmodium falciparum. P. vivax usually causes milder forms of malaria; however, P. vivax can remain dormant in the livers of infected patients for weeks or years before re-emerging in a new bout of the disease. The only drugs available that target all stages of the parasite can lead to severe side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency; hence, there is an urgent need to develop new drugs active against blood and liver stages of the parasite. Different groups have demonstrated that triclosan, a common antibacterial agent, targets the Plasmodium liver enzyme enoyl reductase. Here, we provide 4 independent lines of evidence demonstrating that triclosan specifically targets both wild-type and pyrimethamine-resistant P. falciparum and P. vivax dihydrofolate reductases, classic targets for the blood stage of the parasite. This makes triclosan an exciting candidate for further development as a dual specificity antimalarial, which could target both liver and blood stages of the parasite.


Subject(s)
Antimalarials/pharmacology , Folic Acid Antagonists/pharmacology , Plasmodium/drug effects , Plasmodium/enzymology , Tetrahydrofolate Dehydrogenase/metabolism , Triclosan/pharmacology , Antimalarials/chemistry , Binding Sites , Enzyme Activation/drug effects , Folic Acid Antagonists/chemistry , Models, Molecular , Molecular Conformation , Protein Binding , Structure-Activity Relationship , Tetrahydrofolate Dehydrogenase/chemistry , Triclosan/chemistry
4.
Malar J ; 15(1): 407, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27515166

ABSTRACT

BACKGROUND: A proper identification of malaria vectors is essential for any attempt to control this disease. Between 40 and 47 Anopheles species have been recorded in Colombia, and eight species complexes have been identified in the last decade. An update of Anopheles species distribution and its relationship with malaria is required, particularly for newly identified members of species complexes. METHODS: A cross-sectional entomological study was conducted at 70 localities in the highest malaria transmission areas in Colombia. In each locality, immature and adult mosquitoes were collected. All specimens were determined using morphological characters and confirmed used restriction profiles of Internal Transcribed Spacer 2 (PCR-RFLP-ITS2), and Cytochrome c Oxidase I (COI) sequence gene. To detect natural Plasmodium infections, enzyme-linked immunosorbent assay and nested PCR analysis were used. Distribution of Anopheles species was spatially associated with malaria incidence. RESULTS: A total of 1736 larvae and 12,052 adult mosquitoes were determined in the 70 localities. Thirteen Anopheles species were identified. COI sequence analysis suggested 4 new lineages for Colombia: for Anopheles albimanus (An. albimanus B), Anopheles pseudopunctipennis s.l., Anopheles neivai (An. neivai nr. neivai 4), and Anopheles apicimacula. Two members of species complexes were identified, as: Anopheles nuneztovari C, and Anopheles albitarsis I. Another seven species were confirmed. Four mosquitoes were infected with Plasmodium species, An. albimanus B and An. nuneztovari C. In Northwest of Colombia, An. nuneztovari C, An. albimanus, and Anopheles darlingi were present in the municipalities with highest annual parasitic index (API) (>35 cases/1000 inhabitants). In the north of South Pacific coast, with a similar API, An. nuneztovari C were widely distributed inland, and the main species in coastal regions were An. albimanus B and An. neivai s.l. In the South Pacific coast bordering with Ecuador, 3 Anopheles species were found in municipalities with high API (15-88 cases/1000 inhabitants): An. albimanus B, Anopheles calderoni and An. neivai s.l. CONCLUSIONS: In the highest malaria areas of Colombia, 13 Anopheles species and four new lineages were found, which highlights the need for updating the species distribution. A DNA barcode analysis allowed the taxonomic identification to be refined, particularly for species complexes, and to improve the further understanding of their relation with malaria transmission.


Subject(s)
Anopheles/classification , Anopheles/growth & development , Malaria/epidemiology , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Phylogeography , Topography, Medical , Animals , Cluster Analysis , Colombia/epidemiology , Cross-Sectional Studies , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Female , Humans , Incidence , Male , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...