Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(11): 5932-5940, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28445044

ABSTRACT

Highly oxygenated multifunctional organic compounds (HOMs) originating from biogenic emissions constitute a widespread source of organic aerosols in the pristine atmosphere. However, the molecular forms in which HOMs are present in the condensed phase upon gas-particle partitioning remain unclear. In this study, we show that highly oxygenated molecules that contain multiple peroxide functionalities are readily cationized by the attachment of Na+ during electrospray ionization operated in the positive ion mode. With this method, we present the first identification of HOMs characterized as C8-10H12-18O4-9 monomers and C16-20H24-36O8-14 dimers in α-pinene derived secondary organic aerosol (SOA). Simultaneous detection of these molecules in the gas phase provides direct evidence for their gas-to-particle conversion. Molecular properties of particulate HOMs generated from ozonolysis and OH oxidation of unsubstituted (C10H16) and deuterated (C10H13D3) α-pinene are investigated using coupled ion mobility spectrometry with mass spectrometry. The systematic shift in the mass of monomers in the deuterated system is consistent with the decomposition of isomeric vinylhydroperoxides to release vinoxy radical isotopologues, the precursors to a sequence of autoxidation reactions that ultimately yield HOMs in the gas phase. The remarkable difference observed in the dimer abundance under O3- versus OH-dominant environments underlines the competition between intramolecular hydrogen migration of peroxy radicals and their bimolecular termination reactions. Our results provide new and direct molecular-level information for a key component needed for achieving carbon mass closure of α-pinene SOA.


Subject(s)
Aerosols , Air Pollutants , Monoterpenes , Bicyclic Monoterpenes , Ozone
2.
Environ Sci Technol ; 47(20): 11403-13, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24004194

ABSTRACT

Atmospheric photooxidation of isoprene is an important source of secondary organic aerosol (SOA) and there is increasing evidence that anthropogenic oxidant emissions can enhance this SOA formation. In this work, we use ambient observations of organosulfates formed from isoprene epoxydiols (IEPOX) and methacrylic acid epoxide (MAE) and a broad suite of chemical measurements to investigate the relative importance of nitrogen oxide (NO/NO2) and hydroperoxyl (HO2) SOA formation pathways from isoprene at a forested site in California. In contrast to IEPOX, the calculated production rate of MAE was observed to be independent of temperature. This is the result of the very fast thermolysis of MPAN at high temperatures that affects the distribution of the MPAN reservoir (MPAN / MPA radical) reducing the fraction that can react with OH to form MAE and subsequently SOA (F(MAE formation)). The strong temperature dependence of F(MAE formation) helps to explain our observations of similar concentrations of IEPOX-derived organosulfates (IEPOX-OS; ~1 ng m(-3)) and MAE-derived organosulfates (MAE-OS; ~1 ng m(-3)) under cooler conditions (lower isoprene concentrations) and much higher IEPOX-OS (~20 ng m(-3)) relative to MAE-OS (<0.0005 ng m(-3)) at higher temperatures (higher isoprene concentrations). A kinetic model of IEPOX and MAE loss showed that MAE forms 10-100 times more ring-opening products than IEPOX and that both are strongly dependent on aerosol water content when aerosol pH is constant. However, the higher fraction of MAE ring opening products does not compensate for the lower MAE production under warmer conditions (higher isoprene concentrations) resulting in lower formation of MAE-derived products relative to IEPOX at the surface. In regions of high NOx, high isoprene emissions and strong vertical mixing the slower MPAN thermolysis rate aloft could increase the fraction of MPAN that forms MAE resulting in a vertically varying isoprene SOA source.


Subject(s)
Aerosols/analysis , Aerosols/chemistry , Butadienes/chemistry , Hemiterpenes/chemistry , Pentanes/chemistry , Anhydrides/chemistry , Atmosphere/chemistry , Epoxy Compounds/chemistry , Hydroxyl Radical/chemistry , Methacrylates/chemistry , Oxidation-Reduction , Sulfates/chemistry , Temperature , Time Factors
3.
Environ Sci Technol ; 43(7): 2443-9, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19452899

ABSTRACT

Organic aerosol (OA) emissions from motor vehicles, meat-cooking and trash burning are analyzed here using a high-resolution aerosol mass spectrometer (AMS). High resolution data show that aerosols emitted by combustion engines and plastic burning are dominated by hydrocarbon-like organic compounds. Meat cooking and especially paper burning emissions contain significant fractions of oxygenated organic compounds; however, their unit-resolution mass spectral signatures are very similar to those from ambient hydrocarbon-like OA, and very different from the mass spectra of ambient secondary or oxygenated OA (OOA). Thus, primary OA from these sources is unlikelyto be a significant direct source of ambient OOA. There are significant differences in high-resolution tracer m/zs that may be useful for differentiating some of these sources. Unlike in most ambient spectra, all of these sources have low total m/z 44 and this signal is not dominated by the CO2+ ion. All sources have high m/z 57, which is low during high OOA ambient periods. Spectra from paper burning are similar to some types of biomass burning OA, with elevated m/z 60. Meat cooking aerosols also have slightly elevated m/z 60, whereas motor vehicle emissions have very low signal at this m/z.


Subject(s)
Aerosols/analysis , Cooking , Incineration , Mass Spectrometry/methods , Meat , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...