Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398668

ABSTRACT

This article presents a thorough investigation into the synthesis of trimethylolpropane triacrylate (TMPTA) via the esterification reaction of trimethylolpropane (TMP) with acrylic acid using Amberlite™ 120 IR (H+), Amberlyst® 15, and Dowex™ 50WX8 resins as heterogeneous catalysts. Preliminary comparative tests explored the impact of air flow on water removal during the reaction and different acid-to-alcohol molar ratios (3:1, 6:1, or 9:1 mol:mol). The findings revealed that introducing air significantly enhances TMPTA yield and -OH group conversion, particularly at a 6:1 acid-to-alcohol molar ratio. Based on cost considerations, Amberlite™ 120 IR (H+) was selected as the preferred catalyst for further optimization. This included evaluating the effect of catalyst loading (10%, 5.0%, and 2.5% w/wtot) and assessing the impact of a pre-drying process on resin efficiency. The study concluded that optimal conditions did not necessitate drying, requiring 120 °C, a catalyst loading of 10% w/wtot, a 4 h reaction time, an acid:alcohol ratio of 6:1 mol:mol, the presence of MEHQ (0.1% mol/molAA), and air bubbling at 6 ± 1 Nl/h. Catalyst recycling was effectively implemented with a slight reduction in catalytic activity over consecutive runs. Furthermore, the study explored a scaled-up system with a mechanical stirrer, demonstrating the potential for multi-hundred grams scale-up. Considerations for optimizing the air flow stripping system are also highlighted. In summary, this study provides valuable insights into designing and optimizing the esterification process for TMPTA synthesis, laying the foundation for potential industrial applications.

2.
ACS Omega ; 4(1): 688-698, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459356

ABSTRACT

The growing production of biodiesel as a promising alternative and renewable fuel led as the main problem the dramatic increase of its by-product: glycerol. Different strategies for glycerol derivatization have been reported so far, some more efficient or sustainable than others. Herein, we report a very promising and eco-friendly transformation of glycerol in nontoxic solvents and chemicals (i.e., solketal, ketals), proposing three new families of Fe(III) compounds capable of catalysing glycerol acetalization with unpublished turn over frequencies (TOFs), and adhering most of the principles of green chemistry. The comparison between the activity of complexes of formula [FeCl3(1-R)] (1-R = substituted pyridinimine), [FeCl(2-R,R')] (2-R,R' = substituted O,O'-deprotonated salens) and their corresponding simple salts reveals that the former are extremely convenient because they are able to promote solketal formation with excellent TOFs, up to 105 h-1. Satisfactory performances were shown with respect to the entire range of substrates, with results being competitive to those reported in the literature so far. Moreover, the experimental activity was supported by an accurate and complete ab initio study, which disclosed the fundamental role of iron(III) as Lewis acid in promoting the catalytic activity. The unprecedented high activity and the low loading of the catalyst, combined with the great availability and the good eco-toxicological profile of iron, foster future applications of this catalytic process for the sustainable transformation of an abundant by-product in a variety of chemicals.

3.
J Am Chem Soc ; 124(31): 9038-9, 2002 Aug 07.
Article in English | MEDLINE | ID: mdl-12148993

ABSTRACT

The coordinated ethylene molecule in the dicationic complex [(PNP)Pt(CH2=CH2)](BF4)2 (PNP = 2,6-bis(diphenylphosphinomethyl)pyridine) undergoes nucleophilic attack by free internal alkenes, giving the isolable complexes [(PNP)Pt(CH2=CHCH(Me)CMeRR'](BF4)2 (R, R' = H, Me) and providing a new effective pathway for a chemo- and regio-selective catalytic hydrovinylation reaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...