Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Light Sci Appl ; 12(1): 239, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726280

ABSTRACT

Light emission of europium (Eu3+) ions placed in the vicinity of optically resonant nanoantennas is usually controlled by tailoring the local density of photon states (LDOS). We show that the polarization and shape of the excitation beam can also be used to manipulate light emission, as azimuthally or radially polarized cylindrical vector beam offers to spatially shape the electric and magnetic fields, in addition to the effect of silicon nanorings (Si-NRs) used as nanoantennas. The photoluminescence (PL) mappings of the Eu3+ transitions and the Si phonon mappings are strongly dependent of both the excitation beam and the Si-NR dimensions. The experimental results of Raman scattering and photoluminescence are confirmed by numerical simulations of the near-field intensity in the Si nanoantenna and in the Eu3+-doped film, respectively. The branching ratios obtained from the experimental PL maps also reveal a redistribution of the electric and magnetic emission channels. Our results show that it could be possible to spatially control both electric and magnetic dipolar emission of Eu3+ ions by switching the laser beam polarization, hence the near field at the excitation wavelength, and the electric and magnetic LDOS at the emission wavelength. This paves the way for optimized geometries taking advantage of both excitation and emission processes.

2.
Nanoscale ; 15(2): 599-608, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36485024

ABSTRACT

Improving the brightness of single-photon sources by means of optically resonant nanoantennas is a major stake for the development of efficient nanodevices for quantum communications. We demonstrate that nanoxerography by atomic force microscopy makes possible the fast, robust and repeatable positioning of model quantum nanoemitters (nitrogen-vacancy NV centers in nanodiamonds) on a large-scale in the gap of silicon nanoantennas with a dimer geometry. By tuning the parameters of the nanoxerography process, we can statistically control the number of deposited nanodiamonds, yielding configurations down to a unique single photon emitter coupled to these high index dielectric nanoantennas, with high selectivity and enhanced brightness induced by a near-field Purcell effect. Numerical simulations are in very good quantitative agreement with time-resolved photoluminescence experiments. A multipolar analysis reveals in particular all the aspects of the coupling between the dipolar single emitter and the Mie resonances hosted by these simple nanoantennas. This proof of principle opens a path to a genuine and large-scale spatial control of the coupling of punctual quantum nanoemitters to arrays of optimized optically resonant nanoantennas. It paves the way for future fundamental studies in quantum nano-optics and toward integrated photonics applications for quantum technologies.

3.
Opt Express ; 30(12): 20360-20372, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-36224783

ABSTRACT

We design planar silicon antennas for controlling the emission rate of magnetic or electric dipolar emitters. Evolutionary algorithms coupled to the Green Dyadic Method lead to different optimized geometries which depend on the nature and orientation of the dipoles. We discuss the physical origin of the obtained configurations thanks to modal analysis but also emphasize the role of nanoscale design of the LDOS. We complete our study using finite element method and demonstrate an enhancement up to 2 × 103 of the magnetic Purcell factor in europium ions. Our work brings together random optimizations to explore geometric parameters without constraint, a first order deterministic approach to understand the optimized designs and a modal analysis which clarifies the physical origin of the exaltation of the magnetic Purcell effect.

4.
Opt Express ; 30(19): 34984-34997, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242501

ABSTRACT

The scattering properties of metallic optical antennas are typically examined through the lens of their plasmonic resonances. However, non-plasmonic transition metals also sustain surface waves in the visible. We experimentally investigate in this work the far-field diffraction properties of apertured optical antennas milled on non-plasmonic W films and compare the results with plasmonic references in Ag and Au. The polarization-dependent diffraction patterns and the leakage signal emerging from apertured antennas in both kinds of metals are recorded and analyzed. This thorough comparison with surface plasmon waves reveals that surface waves are launched on W and that they have the common abilities to confine the visible light at metal-dielectric interfaces offering the possibility to tailor the far-field emission. The results have been analyzed through theoretical models accounting for the propagation of a long range surface mode launched by subwavelength apertures, that is scattered in free space by the antenna. This surface mode on W can be qualitatively described as an analogy in the visible of the Zenneck wave in the radio regime. The nature of the new surface waves have been elucidated from a careful analysis of the asymptotic expansion of the electromagnetic propagators, which provides a convenient representation for explaining the Zenneck-like character of the excited waves and opens new ways to fundamental studies of surface waves at the nanoscale beyond plasmonics.

5.
ACS Nano ; 15(8): 13351-13359, 2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34308639

ABSTRACT

Processing information with conventional integrated circuits remains beset by the interconnect bottleneck: circuits made of smaller active devices need longer and narrower interconnects, which have become the prime source of power dissipation and clock rate saturation. Optical interchip communication provides a fast and energy-saving option that still misses a generic on-chip optical information processing by interconnect-free and reconfigurable Boolean arithmetic logic units (ALU). Considering metal plasmons as a platform with dual optical and electronic compatibilities, we forge interconnect-free, ultracompact plasmonic Boolean logic gates and reconfigure them, at will, into computing ALU without any redesign nor cascaded circuitry. We tailor the plasmon mode landscape of a single 2.6 µm2 planar gold cavity and demonstrate the operation and facile reconfiguration of all 2-input logic gates. The potential for higher complexity of the same logic unit is shown by a multi-input excitation and a phase control to realize an arithmetic 2-bit adder.

6.
Nanoscale ; 12(25): 13414-13420, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32614011

ABSTRACT

In the context of the emerging field of quantum plasmonics, we demonstrate in this manuscript the wavelength-dependent propagation and sorting of single plasmons launched in a two-dimensional crystalline gold flake by a broadband quantum nanoemitter. The stream of single plasmons in the visible is produced by a nanodiamond hosting a single nitrogen-vacancy color center positioned in the near field of the mesoscopic metallic microplatelet. Spatially and spectrally resolved images of the single plasmon propagation in the pristine hexagonal flake, and then in the same structure after insertion of a Bragg mirror, are obtained by filtered image-plane acquisitions on a leakage-radiation microscope. Our work on two-dimensional crystalline structures paves the way to future fundamental studies and applications in quantum plasmonics.

7.
Opt Express ; 27(20): 29069-29081, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31684648

ABSTRACT

We demonstrate inverse design of plasmonic nanoantennas for directional light scattering. Our method is based on a combination of full-field electrodynamical simulations via the Green dyadic method and evolutionary optimization (EO). Without any initial bias, we find that the geometries reproducibly found by EO work on the same principles as radio-frequency antennas. We demonstrate the versatility of our approach by designing various directional optical antennas for different scattering problems. EO-based nanoantenna design has tremendous potential for a multitude of applications like nano-scale information routing and processing or single-molecule spectroscopy. Furthermore, EO can help to derive general design rules and to identify inherent physical limitations for photonic nanoparticles and metasurfaces.

8.
Appl Opt ; 58(7): 1682-1690, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30874199

ABSTRACT

We propose a simple experimental technique to separately map the emission from electric and magnetic dipole transitions close to single dielectric nanostructures, using a few-nanometer thin film of rare-earth-ion-doped clusters. Rare-earth ions provide electric and magnetic dipole transitions of similar magnitude. By recording the photoluminescence from the deposited layer excited by a focused laser beam, we are able to simultaneously map the electric and magnetic emission enhancement on individual nanostructures. In spite of being a diffraction-limited far-field method with a spatial resolution of a few hundred nanometers, our approach appeals by its simplicity and high signal-to-noise ratio. We demonstrate our technique at the example of single silicon nanorods and dimers, in which we find a significant separation of electric and magnetic near-field contributions. Our method paves the way towards the efficient and rapid characterization of the electric and magnetic optical response of complex photonic nanostructures.

9.
Sci Rep ; 5: 16635, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26563677

ABSTRACT

Crystalline gold nanoprisms of sub-micrometric size sustain high order plasmon modes in the visible and near infrared range that open a new realm for plasmon modal design, integrated coplanar devices and logic gates. In this article, we explore the tailoring of the surface plasmon local density of states (SP-LDOS) by embedding a single defect, namely a small hole, carved in the platelet by focused ion beam (FIB). The change in the SP-LDOS of the hybrid structure is monitored by two-photon luminescence (TPL) microscopy. The dependency of the two-dimensional optical field intensity maps on the linear polarization of the tightly focused femtosecond laser beam reveals the conditions for which the hole defect significantly affects the initial modes. A detailed numerical analysis of the spectral characteristics of the SP-LDOS based on the Green dyadic method clearly indicates that the hole size and location can be exploited to tune or remove selected SP modes.

10.
Opt Lett ; 40(9): 2116-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25927799

ABSTRACT

When the size of metal nanoparticles is smaller than typically 10 nm, their optical response becomes sensitive to both spatial dispersion and quantum size effects associated with the confinement of the conduction electrons inside the particle. In this Letter, we propose a nonlocal scheme to compute molecular decay rates near spherical nanoparticles which includes the electron-electron interactions through a simple model of electronic polarizabilities. The plasmonic particle is schematized by a dynamic dipolar polarizability α(NL)(ω), and the quantum system is characterized by a two-level system. In this scheme, the light matter interaction is described in terms of classical field susceptibilities. This theoretical framework could be extended to address the influence of nonlocality on the dynamics of quantum systems placed in the vicinity of nano-objects of arbitrary morphologies.

11.
ACS Photonics ; 1(4): 365-370, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-25540811

ABSTRACT

We investigate experimentally the parameter space defining, in the visible range, the far-field diffraction properties of a single circular subwavelength aperture surrounded by periodic circular grooves milled on a metallic film. Diffraction patterns emerging from such an antenna are recorded under parallel- and perpendicular-polarized illumination at a given illumination wavelength. By monitoring the directivity and the gain of the antenna with respect to a single aperture, we point out the role played by the near-field surface plasmon excitations. The results can be analyzed through a Huygens-Fresnel model, accounting for the coherent interaction between the field radiated by the hole and the plasmonic field, propagating along the antenna surface and diffracted away in free space.

12.
Nano Lett ; 10(11): 4566-70, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20964345

ABSTRACT

We demonstrate "deterministic" launching of propagative quantum surface-plasmon polaritons at freely chosen positions on gold plasmonic receptacles. This is achieved by using as a plasmon launcher a near-field scanning optical source made of a diamond nanocrystal with two nitrogen-vacancy color-center occupancy. Our demonstration relies on leakage-radiation microscopy of a thin homogeneous gold film and on near-field optical microscopy of a nanostructured thick gold film. Our work paves the way to future fundamental studies and applications in quantum plasmonics that require an accurate positioning of single-plasmon sources and may open a new branch in plasmonics and nanophotonics, namely scanning quantum plasmonics.


Subject(s)
Gold/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Scattering, Radiation , Computer Simulation , Light , Quantum Theory
13.
Opt Express ; 17(22): 19969-80, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997221

ABSTRACT

We introduce a point-like scanning single-photon source that operates at room temperature and offers an exceptional photostability (no blinking, no bleaching). This is obtained by grafting in a controlled way a diamond nanocrystal (size around 20 nm) with single nitrogen-vacancy color-center occupancy at the apex of an optical probe. As an application, we image metallic nanostructures in the near-field, thereby achieving a near-field scanning single-photon microscopy working at room temperature on the long term. Our work may be of importance to various emerging fields of nanoscience where an accurate positioning of a quantum emitter is required such as for example quantum plasmonics.


Subject(s)
Diamond/chemistry , Image Enhancement/instrumentation , Microscopy, Scanning Probe/instrumentation , Nanostructures/chemistry , Nanostructures/ultrastructure , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Particle Size , Reproducibility of Results , Sensitivity and Specificity
14.
Opt Lett ; 33(6): 611-3, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18347726

ABSTRACT

Diamond nanocrystals containing highly photoluminescent color centers are attractive, nonclassical, and near-field light sources. For near-field applications, the size of the nanocrystal is crucial, since it defines the optical resolution. Nitrogen-vacancy (NV) color centers are efficiently created by proton irradiation and annealing of a nanodiamond powder. Using near-field microscopy and photon statistics measurements, we show that nanodiamonds with sizes down to 25 nm can hold a single NV color center with bright and stable photoluminescence.


Subject(s)
Microscopy/methods , Nanoparticles/chemistry , Nitrogen/chemistry , Optics and Photonics , Crystallization , Equipment Design , Materials Testing , Microscopy/instrumentation , Molecular Probe Techniques , Nanostructures , Nanotechnology , Particle Size , Photons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...