Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 22, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172139

ABSTRACT

Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.


Subject(s)
Arthropods , Animals , Ecosystem , Forests , Seasons , Soil
2.
Nat Commun ; 14(1): 674, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750574

ABSTRACT

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.


Subject(s)
Arthropods , Ecosystem , Humans , Animals , Biodiversity , Tundra , Soil
3.
Sci Rep ; 10(1): 5572, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221344

ABSTRACT

Disturbances are intrinsic drivers of structure and function in ecosystems, hence predicting their effects in forest ecosystems is essential for forest conservation and/or management practices. Yet, knowledge regarding belowground impacts of disturbance events still remains little understood and can greatly vary by taxonomic and functional identity, disturbance type and local environmental conditions. To address this gap in knowledge, we conducted a survey of soil-dwelling Protura, across forests subjected to different disturbance regimes (i.e. windstorms, insect pest outbreaks and clear-cut logging). We expected that the soil proturan assemblages would differ among disturbance regimes. We also hypothesized that these differences would be driven primarily by variation in soil physicochemical properties thus the impacts of forest disturbances would be indirect and related to changes in food resources. To verify that sampling included two geographically distant subalpine glacial lake catchments that differed in underlying geology, each having four different types of forest disturbance, i.e. control, bark beetle outbreak (BB), windthrow + BB (wind + BB) and clear-cut. As expected, forest disturbance had negative effects on proturan diversity and abundance, with multiple disturbances having the greatest impacts. However, differences in edaphic factors constituted a stronger driver of variability in distribution and abundance of proturans assemblages. These results imply that soil biogeochemistry and resource availability can have much stronger effects on proturan assemblages than forest disturbances.


Subject(s)
Arthropods/growth & development , Animals , Biodiversity , Coleoptera/growth & development , Conservation of Natural Resources , Ecosystem , Forests , Lakes , Soil , Trees/physiology
4.
Environ Monit Assess ; 191(4): 222, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30877494

ABSTRACT

Present study focused on how the presence of decaying wood affects soil environment including its biota. The study was carried out in the montane spruce forest, disturbed by wind and bark beetles in Trojmezná Mt. of the Bohemian Forest in the Czech Republic. According to the results, presence of decomposing wood influenced soil environment in terms of its chemical properties by increasing soil pH and total carbon content significantly in soil below the trunks compared with soil from further distance. Decomposing wood did not affect total density and species richness of Collembola, but it had a significant influence on species composition and some species were more abundant in soil right below the trunks whereas others preferred soil environment further from them. Finally, significant relations, both positive and negative, were recorded between some Collembola species and ammonium. Thus, this substance might play a role of a volatile attractant in soil environment.


Subject(s)
Arthropods/physiology , Environmental Monitoring , Soil Microbiology , Soil/chemistry , Wood/chemistry , Animals , Czech Republic , Forests , Fungi , Picea
5.
Sci Rep ; 5: 18161, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26670681

ABSTRACT

This study examined the effects of micro-scale, site and 19 and 21 years of experimental warming on Collembola in three contrasting alpine subarctic plant communities (poor heath, rich meadow, wet meadow). Unexpectedly, experimental long-term warming had no significant effect on species richness, effective number of species, total abundance or abundance of any Collembola species. There were micro-scale effects on species richness, total abundance, and abundance of 10 of 35 species identified. Site had significant effect on effective number of species, and abundance of six species, with abundance patterns differing between sites. Site and long-term warming gave non-significant trends in species richness. The highest species richness was observed in poor heath, but mean species richness tended to be highest in rich meadow and lowest in wet meadow. Warming showed a tendency for a negative impact on species richness. This long-term warming experiment across three contrasting sites revealed that Collembola is capable of high resistance to climate change. We demonstrated that micro-scale and site effects are the main controlling factors for Collembola abundance in high alpine subarctic environments. Thus local heterogeneity is likely important for soil fauna composition and may play a crucial role in buffering Collembola against future climate change.


Subject(s)
Arthropods , Biodiversity , Climate Change , Ecosystem , Animals , Arctic Regions , Plants , Sweden
6.
Environ Monit Assess ; 185(6): 5085-98, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23064850

ABSTRACT

Soil Collembola communities were investigated in spruce forest stands of the High Tatra Mts that had been heavily damaged by a windstorm in November 2004 and subsequently by a wildfire in July 2005. The study focused on the impact of these disturbances and forestry practices on collembolan community distribution and structure 4 years after the disturbance. Four different treatments were selected for this study: intact forest stands (REF), non-extracted windthrown stands (NEX), clear-cut windthrown stands (EXT) and burnt windthrown stands (FIR). From a total of 7,820 individuals, 72 species were identified. The highest total abundance mean was recorded in FIR stands followed by NEX and EXT stands and, surprisingly, the lowest in REF stands. The highest total species richness was observed in REF stands, followed by NEX stands and FIR stands and the lowest in EXT stands. In REF and NEX stands, the most abundant species were Folsomia penicula and Tetracanthella fjellbergi, while in heavily damaged stands, the most abundant was Anurophorus laricis. The ordination method used demonstrated a significant influence of treatment on the abundance of Collembola. ANOVA used confirmed significant differences for all dominant species between treatments. The present study shows the negative impact of windthrow on Collembola communities as reflected in decreased species richness and abundance. However, disturbance by fire caused a considerable increase in collembolan abundance 3 years after the event. Moreover, we show that clearing of windthrown spruce forests after a windstorm is less favourable for communities of soil collembolans and slows down the recovery process.


Subject(s)
Arthropods/growth & development , Environmental Monitoring , Forestry/methods , Picea/growth & development , Animals , Arthropods/classification , Environment , Fires/statistics & numerical data , Risk Assessment , Slovakia , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...