Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 38557, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27934898

ABSTRACT

While Abrikosov vortices repel each other and form a uniform vortex lattice in bulk type-II superconductors, strong confinement potential profoundly affects their spatial distribution eventually leading to vortex cluster formation. The confinement could be induced by the geometric boundaries in mesoscopic-size superconductors or by the spatial modulation of the magnetic field in superconductor/ferromagnet (S/F) hybrids. Here we study the vortex confinement in S/F thin film heterostructures and we observe that vortex clusters appear near magnetization inhomogeneities in the ferromagnet, called bifurcations. We use magnetic force microscopy to image magnetic bifurcations and superconducting vortices, while high resolution scanning tunneling microscopy is used to obtain detailed information of the local electronic density of states outside and inside the vortex cluster. We find an intervortex spacing at the bifurcation shorter than the one predicted for the same superconductor in a uniform magnetic field equal to the thermodynamical upper critical field Hc2. This result is due to a local enhanced stray field and a competition between vortex-vortex repulsion and Lorentz force. Our findings suggest that special magnetic topologies could result in S/F hybrids that support superconductivity even when locally the vortex density exceeds the thermodynamic critical threshold value beyond which the superconductivity is destroyed.

2.
J Phys Condens Matter ; 22(4): 045702, 2010 Feb 03.
Article in English | MEDLINE | ID: mdl-21386321

ABSTRACT

We have performed scanning tunneling spectroscopy and point contact spectroscopy measurements on the electron-doped superconductor Pr(1-x)LaCe(x)CuO(4-y) (x = 0.12, T(c) is approximately equal 25 K). We address the question of the symmetry of the order parameter and of the amplitude of the energy gap. We compare three possible scenarios, i.e. isotropic s-wave, 'anisotropic' s-wave, and d-wave. Evidence for a d-wave symmetry of the order parameter is given. From the temperature evolution of the dI/dV versus V characteristics we extract a BCS-like temperature dependence of the superconducting energy gap Δ. Despite the variety of measured spectra we give a consistent explanation for the whole set of data, indicating Δ = (3.6 ± 0.2) meV and a ratio 2Δ/K(B)T(C) is approximately equal 3.5 ±0.2. In particular, point contact characteristics showing gap-like features at higher voltages have been interpreted by considering the formation of an intergrain Josephson junction in series with the point contact junction. Further confirmation of the correctness of the model is given by the behavior of the critical current of the intergrain Josephson junction versus temperature which follows the Ambegaokar-Baratoff behavior.

3.
J Phys Condens Matter ; 21(25): 254205, 2009 Jun 24.
Article in English | MEDLINE | ID: mdl-21828429

ABSTRACT

The fabrication and characterization of superconducting and ferromagnetic heterostructures is an open field due to the fundamental interest in the physics of the coexistence of these two competing orders and their possible applications in the spintronics industry. In this paper we present structural, electrical and magnetic characterization for the single La(0.7)Ca(0.3)MnO(3) (LCMO) thin layer, La(0.7)Ca(0.3)MnO(3)/YBa(2)Cu(3)O(7-x) (LCMO/YBCO) bilayers and the LCMO/YBCO/LCMO trilayers. In particular, we show a detailed magnetic characterization of the LCMO thin films by means of low temperature magnetic force microscopy. We discuss the different dynamics of the magnetic domains observed, depending on the substrate induced strain and on the film thickness.

4.
Nanotechnology ; 19(39): 395701, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-21832602

ABSTRACT

The electron field emission characteristics of individual multiwalled carbon nanotubes were investigated by a piezoelectric nanomanipulation system operating inside a scanning electron microscopy chamber. The experimental set-up ensures a precise evaluation of the geometric parameters (multiwalled carbon nanotube length and diameter and anode-cathode separation) of the field emission system. For several multiwalled carbon nanotubes, reproducible and quite stable emission current behaviour was obtained, with a dependence on the applied voltage well described by a series resistance modified Fowler-Nordheim model. A turn-on field of ∼30 V µm(-1) and a field enhancement factor of around 100 at a cathode-anode distance of the order of 1 µm were evaluated. Finally, the effect of selective electron beam irradiation on the nanotube field emission capabilities was extensively investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...