Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998468

ABSTRACT

Fallopia japonica (FJ), commonly known as Japanese knotweed, is now recognized as one of the most invasive plants in Europe and globally. Despite its widespread presence in Europe and its significant nectar production, there is currently limited scientific data on the unique unifloral honey derived from it. This study examines the physicochemical composition of Fallopia japonica honey (FJH) samples collected from various regions in Romania. Additionally, the nutritional and antioxidant profiles of FJH were assessed. The sensory analysis revealed a honey with a brown-caramel color and an intense flavor, characterized by fine, consistent crystals during crystallization. The results indicated that FJH has a high carbohydrate content (fructose: 35.12-40.65 g/100 g; glucose: 28.06-37.79 g/100 g); elevated electrical conductivity (387-692 µS/cm), diastase activity (9.11-17.01 DN), and acidity (21.61-42.89 meq/kg); and substantial total phenolic (89.87-120.08 mg/100 g) and flavonoid (18.13-39.38 mg/g) contents. These findings highlight FJH's favorable nutritional properties, aligning with the standard codex for honey. The antioxidant profile of FJH demonstrated strong DPPH and ferric reduction antioxidant power (FRAP) activities, comparable to those of buckwheat honey, underscoring its potential health benefits and commercial value. These results provide new insights into how this invasive plant can be harnessed as a valuable resource for sustainable beekeeping practices.

2.
Plants (Basel) ; 13(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999722

ABSTRACT

Fallopia japonica (FJ), an invasive plant species known for its rich bioactive compounds, has been used for centuries in traditional Chinese medicine. Despite its significant beekeeping potential, this aspect of FJ remains underexplored. This research aims to investigate the antimicrobial and antibiofilm properties of FJ plants and honey. Notably, this study is the first to identify individual phenolic compounds in both FJ plant tissues and FJ honey, highlighting resveratrol as a marker of FJ honey. The study tested inhibitory activity against seven bacterial strains: Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Salmonella enteritidis, and the yeast Candida albicans. Disk diffusion and microdilution methods were used to assess antimicrobial activity, while the crystal violet staining test evaluated antibiofilm activity. Results showed that FJ plant tissues and honey exhibited strong inhibition, particularly against Gram-negative bacterial strains. The most significant inhibition of biofilm formation, by both FJ plant tissues and honey, was observed against Staphylococcus aureus and Escherichia coli. A significant positive correlation was found between antimicrobial activity and individual polyphenols, especially resveratrol. The antibacterial and antibiofilm potential of FJ plant tissues and honey suggests promising applications in sustainable beekeeping. Further research is necessary to evaluate the bioactive compounds found in FJ honey and their health effects.

3.
Plants (Basel) ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337961

ABSTRACT

Fallopia japonica (Japanese knotweed, Reynoutria japonica or Polygonum cuspidatum) is considered an extremely invasive plant worldwide and a bioindicator of heavy metals. Yet, its potential as a crop for honeybees is still underevaluated. This study employs atomic absorption spectrometry to quantitatively analyze the concentration of macro-elements, namely, calcium (Ca), potassium (K) and magnesium (Mg); micro-elements, such as copper (Cu), iron (Fe), manganese (Mn) and selenium (Se); and trace elements, i.e., cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) in different anatomic parts of Fallopia japonica (FJ) plants (roots, rhizomes, stems, leaves) and their traceability into honey. This research encompasses a thorough examination of samples collected from the northwestern and western part of Romania, providing insights into their elemental composition. The results showed that the level of trace elements decreases in terms of traceability in honey samples (Pb was not detected in any of the analyzed samples, while Cd had a minimum content 0.001 mg/kg), ensuring its quality and health safety for consumption. Moreover, the data generated can function as a valuable resource to explore the plant's positive eco-friendly impacts, particularly in relation to its honey.

4.
Molecules ; 28(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677907

ABSTRACT

Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.


Subject(s)
Antineoplastic Agents , Bombyx , Fibroins , Neoplasms , Animals , Humans , Bombyx/metabolism , Anthocyanins , Silk , Fibroins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy
5.
Plants (Basel) ; 11(15)2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35956470

ABSTRACT

Calluna vulgaris, belonging to the Ericaceae family, is an invasive plant that has widely spread from Europe all across Asia, North America, Australia and New Zealand. Being able to survive in rigid soil and environmental conditions, it is nowadays considered to be of high nature-conservation value. Known for its nutritional and medicinal properties, C. vulgaris stands out for its varied physiochemical composition, spotlighting a wide range of biological activity. Among the most important bioactive compounds identified in C. vulgaris, the phenolic components found in different parts of this herbaceous plant are the main source of its diverse pro-health properties (antioxidant, anti-inflammatory, antimicrobial, chemoprotective, etc.). Nonetheless, this plant exhibits an excellent nectariferous potential for social insects such as honeybees; therefore, comparing the bioactive compounds observed in the plant and in the final product of the beehive, namely honey, will help us understand and find new insights into the health benefits provided by the consumption of C. vulgaris-related products. Thus, the main interest of this work is to review the nutritional profile, chemical composition and biological activities of the C. vulgaris plant and its related honey in order to encourage the future exploration and use of this health-promoting plant in novel foods, pharmacological products and apitherapy.

6.
Insects ; 13(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35323584

ABSTRACT

Silk fibroin (SF) is a natural protein (biopolymer) extracted from the cocoons of Bombyx mori L. (silkworm). It has many properties of interest in the field of biotechnology, the most important being biodegradability, biocompatibility and robust mechanical strength with high tensile strength. SF is usually dissolved in water-based solvents and can be easily reconstructed into a variety of material formats, including films, mats, hydrogels, and sponges, by various fabrication techniques (spin coating, electrospinning, freeze-drying, and physical or chemical crosslinking). Furthermore, SF is a feasible material used in many biomedical applications, including tissue engineering (3D scaffolds, wounds dressing), cancer therapy (mimicking the tumor microenvironment), controlled drug delivery (SF-based complexes), and bone, eye and skin regeneration. In this review, we describe the structure, composition, general properties, and structure-properties relationship of SF. In addition, the main methods used for ecological extraction and processing of SF that make it a green material are discussed. Lastly, technological advances in the use of SF-based materials are addressed, especially in healthcare applications such as tissue engineering and cancer therapeutics.

7.
Plants (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34961091

ABSTRACT

Known especially for its negative ecological impact, Fallopia japonica (Japanese knotweed) is now considered one of the most invasive species. Nevertheless, its chemical composition has shown, beyond doubt, some high biological active compounds that can be a source of valuable pharmacological potential for the enhancement of human health. In this direction, resveratrol, emodin or polydatin, to name a few, have been extensively studied to demonstrate the beneficial effects on animals and humans. Thus, by taking into consideration the recent advances in the study of Japanese knotweed and its phytochemical constituents, the aim of this article is to provide an overview on the high therapeutic potential, underlining its antioxidant, antimicrobial, anti-inflammatory and anticancer effects, among the most important ones. Moreover, we describe some future directions for reducing the negative impact of Fallopia japonica by using the plant for its beekeeping properties in providing a distinct honey type that incorporates most of its bioactive compounds, with the same health-promoting properties.

8.
Insects ; 13(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35055871

ABSTRACT

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...