Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(23): 6899-6919, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35774173

ABSTRACT

In vivo data are rare but essential for establishing the clinical potential of ruthenium-based photoactivated chemotherapy (PACT) compounds, a new family of phototherapeutic drugs that are activated via ligand photosubstitution. Here a novel trisheteroleptic ruthenium complex [Ru(dpp)(bpy)(mtmp)](PF6)2 ([2](PF6)2, dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2'-bipyridine, mtmp = 2-methylthiomethylpyridine) was synthesized and its light-activated anticancer properties were validated in cancer cell monolayers, 3D tumor spheroids, and in embryonic zebrafish cancer models. Upon green light irradiation, the non-toxic mtmp ligand is selectively cleaved off, thereby releasing a phototoxic ruthenium-based photoproduct capable notably of binding to nuclear DNA and triggering DNA damage and apoptosis within 24-48 h. In vitro, fifteen minutes of green light irradiation (21 mW cm-2, 19 J cm-2, 520 nm) were sufficient to generate high phototherapeutic indexes (PI) for this compound in a range of cancer cell lines including lung (A549), prostate (PC3Pro4), conjunctival melanoma (CRMM1, CRMM2, CM2005.1) and uveal melanoma (OMM1, OMM2.5, Mel270) cancer cell lines. The therapeutic potential of [2](PF6)2 was further evaluated in zebrafish embryo ectopic (PC3Pro4) or orthotopic (CRMM1, CRMM2) tumour models. The ectopic model consisted of red fluorescent PC3Pro4-mCherry cells injected intravenously (IV) into zebrafish, that formed perivascular metastatic lesions at the posterior ventral end of caudal hematopoietic tissue (CHT). By contrast, in the orthotopic model, CRMM1- and CRMM2-mCherry cells were injected behind the eye where they developed primary lesions. The maximally-tolerated dose (MTD) of [2](PF6)2 was first determined for three different modes of compound administration: (i) incubating the fish in prodrug-containing water (WA); (ii) injecting the prodrug intravenously (IV) into the fish; or (iii) injecting the prodrug retro-orbitally (RO) into the fish. To test the anticancer efficiency of [2](PF6)2, the embryos were treated 24 h after engraftment at the MTD. Optimally, four consecutive PACT treatments were performed on engrafted embryos using 60 min drug-to-light intervals and 90 min green light irradiation (21 mW cm-2, 114 J cm-2, 520 nm). Most importantly, this PACT protocol was not toxic to the zebrafish. In the ectopic prostate tumour models, where [2](PF6)2 showed the highest photoindex in vitro (PI > 31), the PACT treatment did not significantly diminish the growth of primary lesions, while in both conjunctival melanoma orthotopic tumour models, where [2](PF6)2 showed more modest photoindexes (PI ∼ 9), retro-orbitally administered PACT treatment significantly inhibited growth of the engrafted tumors. Overall, this study represents the first demonstration in zebrafish cancer models of the clinical potential of ruthenium-based PACT, here against conjunctival melanoma.

2.
Chemistry ; 25(5): 1260-1268, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30318782

ABSTRACT

Cyclometallated ruthenium complexes typically exhibit red-shifted absorption bands and lower photolability compared to their polypyridyl analogues. They also have lower symmetry, which sometimes makes their synthesis challenging. In this work, the coordination of four N,S bidentate ligands, 3-(methylthio)propylamine (mtpa), 2-(methylthio)ethylamine (mtea), 2-(methylthio)ethyl-2-pyridine (mtep), and 2-(methylthio)methylpyridine (mtmp), to the cyclometallated precursor [Ru(bpy)(phpy)(CH3 CN)2 ]+ (bpy=2,2'-bipyridine, Hphpy=2-phenylpyridine) has been investigated, furnishing the corresponding heteroleptic complexes [Ru(bpy)(phpy)(N,S)]PF6 ([2]PF6 -[5]PF6 , respectively). The stereoselectivity of the synthesis strongly depended on the size of the ring formed by the Ru-coordinated N,S ligand, with [2]PF6 and [4]PF6 being formed stereoselectively, but [3]PF6 and [5]PF6 being obtained as mixtures of inseparable isomers. The exact stereochemistry of the air-stable complex [4]PF6 was established by a combination of DFT, 2D NMR, and single-crystal X-ray crystallographic studies. Finally, [4]PF6 was found to be photosubstitutionally active under irradiation with green light in acetonitrile, which makes it the first cyclometallated ruthenium complex capable of undergoing selective photosubstitution of a bidentate ligand.

3.
Chem Commun (Camb) ; 53(50): 6768-6771, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28597879

ABSTRACT

In metal-based photoactivated chemotherapy (PACT), two photoproducts are generated by light-triggered photosubstitution of a metal-bound ligand: the free ligand itself and an aquated metal complex. By analogy with cisplatin, the aquated metal complex is usually presented as the biologically active species, as it can typically bind to DNA. In this work, we show that this qualitative assumption is not necessarily valid by comparing the biological activity, log P, and cellular uptake of three ruthenium-based PACT complexes: [Ru(bpy)2(dmbpy)]2+, [Ru(bpy)2(mtmp)]2+, and [Ru(Ph2phen)2(mtmp)]2+. For the first complex, the photoreleased dmbpy ligand is responsible for the observed phototoxicity, whereas the second complex is not phototoxic, and for the third complex it is the ruthenium bis-aqua photoproduct that is the sole cytotoxic species.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Ruthenium/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Structure-Activity Relationship
4.
Inorg Chem ; 56(9): 4818-4828, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28406644

ABSTRACT

Ruthenium polypyridyl complexes are good candidates for photoactivated chemotherapy (PACT) provided that they are stable in the dark but efficiently photosubstitute one of their ligands. Here the use of the natural amino acid l-proline as a protecting ligand for ruthenium-based PACT compounds is investigated in the series of complexes Λ-[Ru(bpy)2(l-prol)]PF6 ([1a]PF6; bpy = 2,2'-bipyridine and l-prol = l-proline), Λ-[Ru(bpy)(dmbpy)(l-prol)]PF6 ([2a]PF6 and [2b]PF6; dmbpy = 6,6'-dimethyl-2,2'-bipyridine), and Λ-[Ru(dmbpy)2(l-prol)]PF6 ([3a]PF6). The synthesis of the tris-heteroleptic complex bearing the dissymmetric proline ligand yielded only two of the four possible regioisomers, called [2a]PF6 and [2b]PF6. Both isomers were isolated and characterized by a combination of spectroscopy and density functional theory calculations. The photoreactivity of all four complexes [1a]PF6, [2a]PF6, [2b]PF6, and [3a]PF6 was studied in water (H2O) and acetonitrile (MeCN) using UV-vis spectroscopy, circular dichroism spectroscopy, mass spectrometry, and 1H NMR spectroscopy. In H2O, upon visible-light irradiation in the presence of oxygen, no photosubstitution took place, but the amine of complex [1a]PF6 was photooxidized to an imine. Contrary to expectations, enhancing the steric strain by the addition of two ([2b]PF6) or four ([3a]PF6) methyl substituents did not lead, in phosphate-buffered saline (PBS), to ligand photosubstitution. However, it prevented photoxidation, probably as a consequence of the electron-donating effect of the methyl substituents. In addition, whereas [2b]PF6 was photostable in PBS, [2a]PF6 quantitatively isomerized to [2b]PF6 upon light irradiation. In pure MeCN, [2a]PF6 and [3a]PF6 showed non-selective photosubstitution of both the l-proline and dmbpy ligands, whereas the non-strained complex [1a]PF6 was photostable. Finally, in H2O-MeCN mixtures, [3a]PF6 showed selective photosubstitution of l-proline, thus demonstrating the active role played by the solvent on the photoreactivity of this series of complexes. The role of the solvent polarity and coordination properties on the photochemical properties of polypyridyl complexes is discussed.

5.
Dalton Trans ; 43(11): 4494-505, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24395135

ABSTRACT

The ruthenium complex [Ru(terpy)(bpy)(Hmte)](2+) ([1](2+)), where terpy is 2,2';6',2''-terpyridine, bpy is 2,2'-bipyridine, and Hmte is 2-methylthioethan-1-ol, poorly absorbs yellow light, and although its quantum yield for the photosubstitution of Hmte by water is comparable at 570 nm and at 452 nm (0.011(4) vs. 0.016(4) at 298 K at neutral pH), the photoreaction using yellow photons is very slow. Complex [1](2+) was thus functionalized with rhodamine B, an organic dye known for its high extinction coefficient for yellow light. Complex [Ru(Rterpy)(bpy)(Hmte)](3+) ([2](3+)) was synthesized, where Rterpy is a terpyridine ligand covalently bound to rhodamine B via a short saturated linker. [2]Cl3 shows a very high extinction coefficient at 570 nm (44,000 M(-1) cm(-1)), but its luminescence upon irradiation at 570 nm is completely quenched in aqueous solution. The quantum yield for the photosubstitution of Hmte by water in [2](3+) was comparable to that in [1](2+) at 570 nm (0.0085(6) vs. 0.011(4), respectively), which, in combination with the much better photon collection, resulted in a higher photosubstitution rate constant for [2](3+) than for [1](2+). The energy of yellow photons is thus transferred efficiently from the rhodamine antenna to the ruthenium center, leading to efficient photosubstitution of Hmte. These results bring new opportunities for extending the photoactivation of polypyridyl ruthenium complexes towards longer wavelengths.

SELECTION OF CITATIONS
SEARCH DETAIL
...