Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Diagnostics (Basel) ; 13(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37685383

ABSTRACT

Alpha-1 antitrypsin (AAT1) deficiency (AAT1D) is an inherited disease with an increased risk of chronic obstructive pulmonary disease (COPD), liver disease, and skin and blood vessel problems. AAT1D is caused by mutations in the SERPINE1 gene (Serine Protease Inhibitor, group A, member 1). Numerous variants of this gene, the Pi system, have been identified. The most frequent allelic variants are Pi*M, Pi*S, and Pi*Z. The development of COPD requires both a genetic predisposition and the contribution of an environmental factor, smoking being the most important. Studies on this deficiency worldwide are very scarce, and it is currently considered a rare disease because it is underdiagnosed. The aim of this study was to analyze the genotypic frequencies of mutations associated with AAT1 deficiency in unrelated bone marrow donors from the donor registry of the Region of Murcia in southeastern Spain due to the high risk of presenting with different pathologies and underdiagnosis in the population. A total of 112 DNA-healthy voluntary unrelated bone marrow donors from different parts of the Region of Murcia were analyzed retrospectively. AAT1 deficiency patient testing involved an automated biochemical screening routine. The three main variants, Pi*M, Pi*Z, and Pi*S, were analyzed in the SERPINE1 gene. Our results showed a frequency of 3.12% of the Pi*Z (K342) mutation in over 224 alleles tested in the healthy population. The frequency of Pi*S (V264) was 11.1%. The frequency of the haplotype with the most dangerous mutation, EK342 EE264, was 4.46%, and the frequency of EK342 EV264 was 1.78% in the healthy population. Frequencies of other EE342 EV264-mutated haplotypes accounted for 18.7%. As for the EE342 VV264 haplotype, 0.89% of the total healthy population presented heterozygous for the EV264 mutation and one individual presented homozygous for the VV264 mutation. In conclusion, the frequencies of Pi mutations in the healthy population of the Region of Murcia were not remarkably different from the few studies reported in Spain. The genotype and haplotype frequencies followed the usual pattern. Health authorities should be aware of this high prevalence of the Pi*S allelic variant and pathological genotypes such as Pi*MZ and Pi*SZ in the healthy population if they consider screening the smoking population.

2.
Fungal Biol Biotechnol ; 8(1): 11, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702369

ABSTRACT

Fungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.

3.
Methods Mol Biol ; 2234: 63-72, 2021.
Article in English | MEDLINE | ID: mdl-33165779

ABSTRACT

In this chapter, we describe a routinely used strategy for targeted gene insertions in Trichoderma reesei using auxotrophic markers. Generally, targeted gene integrations are advantageous over random, ectopic integration, because the copy number and locus of integration are controlled, abolishing the risk of pleiotropic effects. The use of auxotrophic markers allows a direct, cheap, and easy method for selection. The first step is the construction of recipient strains in a NHEJ-deficient strain. We routinely use deletion strains of pyr4, encoding for the orotidine 5'-phosphate decarboxylase (EC 4.1.1.23) and/or asl1, encoding for the argininosuccinate lyase (EC 4.3.2.1). In the second step, the gene of interest is inserted together with the marker gene. Here we describe the necessary strategy for the construction of the recipient strains and insertion constructs, a PEG-mediated transformation protocol, and a protocol for genetic confirmation of the gene insertion.


Subject(s)
Gene Targeting , Hypocreales/genetics , Mutagenesis, Insertional/methods , Chromosomes, Fungal/genetics , DNA, Fungal/genetics , Gene Deletion , Genetic Loci , Genetic Markers , Plasmids/genetics , Transformation, Genetic
4.
Bioengineering (Basel) ; 7(4)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086521

ABSTRACT

Obstructive sleep apnea syndrome is a reduction of the airflow during sleep which not only produces a reduction in sleep quality but also has major health consequences. The prevalence in the obese pediatric population can surpass 50%, and polysomnography is the current gold standard method for its diagnosis. Unfortunately, it is expensive, disturbing and time-consuming for experienced professionals. The objective is to develop a patient-friendly screening tool for the obese pediatric population to identify those children at higher risk of suffering from this syndrome. Three supervised learning classifier algorithms (i.e., logistic regression, support vector machine and AdaBoost) common in the field of machine learning were trained and tested on two very different datasets where oxygen saturation raw signal was recorded. The first dataset was the Childhood Adenotonsillectomy Trial (CHAT) consisting of 453 individuals, with ages between 5 and 9 years old and one-third of the patients being obese. Cross-validation was performed on the second dataset from an obesity assessment consult at the Pediatric Department of the Hospital General Universitario of Valencia. A total of 27 patients were recruited between 5 and 17 years old; 42% were girls and 63% were obese. The performance of each algorithm was evaluated based on key performance indicators (e.g., area under the curve, accuracy, recall, specificity and positive predicted value). The logistic regression algorithm outperformed (accuracy = 0.79, specificity = 0.96, area under the curve = 0.9, recall = 0.62 and positive predictive value = 0.94) the support vector machine and the AdaBoost algorithm when trained with the CHAT datasets. Cross-validation tests, using the Hospital General de Valencia (HG) dataset, confirmed the higher performance of the logistic regression algorithm in comparison with the others. In addition, only a minor loss of performance (accuracy = 0.75, specificity = 0.88, area under the curve = 0.85, recall = 0.62 and positive predictive value = 0.83) was observed despite the differences between the datasets. The proposed minimally invasive screening tool has shown promising performance when it comes to identifying children at risk of suffering obstructive sleep apnea syndrome. Moreover, it is ideal to be implemented in an outpatient consult in primary and secondary care.

5.
J Biol Chem ; 286(21): 18414-25, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21460223

ABSTRACT

Neurotrophins, activating the PI3K/Akt signaling pathway, control neuronal survival and plasticity. Alterations in NGF, BDNF, IGF-1, or insulin signaling are implicated in the pathogenesis of Alzheimer disease. We have previously characterized a bigenic PS1×APP transgenic mouse displaying early hippocampal Aß deposition (3 to 4 months) but late (17 to 18 months) neurodegeneration of pyramidal cells, paralleled to the accumulation of soluble Aß oligomers. We hypothesized that PI3K/Akt/GSK-3ß signaling pathway could be involved in this apparent age-dependent neuroprotective/neurodegenerative status. In fact, our data demonstrated that, as compared with age-matched nontransgenic controls, the Ser-9 phosphorylation of GSK-3ß was increased in the 6-month PS1×APP hippocampus, whereas in aged PS1×APP animals (18 months), GSK-3ß phosphorylation levels displayed a marked decrease. Using N2a and primary neuronal cell cultures, we demonstrated that soluble amyloid precursor protein-α (sAPPα), the predominant APP-derived fragment in young PS1×APP mice, acting through IGF-1 and/or insulin receptors, activated the PI3K/Akt pathway, phosphorylated the GSK-3ß activity, and in consequence, exerted a neuroprotective action. On the contrary, several oligomeric Aß forms, present in the soluble fractions of aged PS1×APP mice, inhibited the induced phosphorylation of Akt/GSK-3ß and decreased the neuronal survival. Furthermore, synthetic Aß oligomers blocked the effect mediated by different neurotrophins (NGF, BDNF, insulin, and IGF-1) and sAPPα, displaying high selectivity for NGF. In conclusion, the age-dependent appearance of APP-derived soluble factors modulated the PI3K/Akt/GSK-3ß signaling pathway through the major neurotrophin receptors. sAPPα stimulated and Aß oligomers blocked the prosurvival signaling. Our data might provide insights into the selective vulnerability of specific neuronal groups in Alzheimer disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Glycogen Synthase Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Multimerization , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Aging/genetics , Aging/metabolism , Aging/pathology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Cell Survival/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta , Humans , Mice , Mice, Transgenic , Nerve Growth Factors/genetics , Nerve Growth Factors/metabolism , Neurons/metabolism , Neurons/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/genetics , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptor, Insulin
6.
Biochim Biophys Acta ; 1793(2): 253-63, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18848961

ABSTRACT

Transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes, through a mechanism mediated by reactive oxygen species (ROS) production. Numerous tumoral cells develop mechanisms to escape from the TGF-beta-induced tumor suppressor effects. In this work we show that in FaO rat hepatoma cells inhibition of the epidermal growth factor receptor (EGFR) with the tyrphostin AG1478 enhances TGF-beta-induced cell death, coincident with an elevated increase in ROS production and GSH depletion. These events correlate with down-regulation of genes involved in the maintenance of redox homeostasis, such as gamma-GCS and MnSOD, and elevated mitochondrial ROS. Nonetheless, not all the ROS proceed from the mitochondria. Emerging evidences indicate that ROS production by TGF-beta is also mediated by the NADPH oxidase (NOX) system. TGF-beta-treated FaO cells induce nox1 expression. However, the treatment with TGF-beta and AG1478 greatly enhanced the expression of another family member: nox4. NOX1 and NOX4 targeted knock-down by siRNA experiments suggest that they play opposite roles, because NOX1 knockdown increases caspase-3 activity and cell death, whilst NOX4 knock-down attenuates the apoptotic process. This attenuation correlates with maintenance of GSH and antioxidant enzymes levels. In summary, EGFR inhibition enhances apoptosis induced by TGF-beta in FaO rat hepatoma cells through an increased oxidative stress coincident with a change in the expression pattern of NOX enzymes.


Subject(s)
Apoptosis/drug effects , Carcinoma, Hepatocellular/enzymology , Epidermal Growth Factor/metabolism , Liver Neoplasms/enzymology , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Transforming Growth Factor beta/pharmacology , Animals , Antioxidants/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , ErbB Receptors/antagonists & inhibitors , Gene Expression Regulation, Neoplastic/drug effects , Isoenzymes/genetics , Isoenzymes/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mitochondria/drug effects , Mitochondria/metabolism , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/genetics , Protein Kinase Inhibitors/pharmacology , Quinazolines , RNA, Small Interfering/metabolism , Rats , Reactive Oxygen Species/metabolism , Tyrphostins/pharmacology
7.
J Hepatol ; 49(6): 965-76, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18845355

ABSTRACT

BACKGROUND/AIMS: The transforming growth factor-beta (TGF-beta) induces apoptosis in hepatocytes through an oxidative stress process. Here, we have analyzed the role of different NADPH oxidase isoforms in the intracellular signalling induced by TGF-beta in hepatocytes, to later explore whether this mechanism is altered in liver tumor cells. METHODS: Primary cultures of rat and human hepatocytes, HepG2 and Hep3B cells were used in in vitro studies to analyze the TGF-beta response. RESULTS: TGF-beta-induced apoptosis in rat hepatocytes does not require Rac-dependent NADPH oxidases. TGF-beta upregulates the Rac-independent Nox4, which correlates with its pro-apoptotic activity. Regulation of Nox4 occurs at the transcriptional level and is counteracted by intracellular survival signals. siRNA targeted knock-down of Nox4 attenuates NADPH oxidase activity, caspase activation and cell death in rat hepatocytes. NOX4 upregulation by TGF-beta is also observed in human hepatocytes, coincident with apoptosis. In human hepatocellular carcinoma (HCC) cell lines, NOX4 upregulation by TGF-beta is only observed in cells that are sensitive to its cytotoxic effect, such as Hep3B cells. siRNA targeted knock-down of NOX4 in these cells impairs TGF-beta-induced apoptosis. CONCLUSIONS: Upregulation of NOX4 by TGF-beta is required for its pro-apoptotic activity in hepatocytes. Impairment of this TGF-beta-induced response might confer apoptosis resistance in HCC cells.


Subject(s)
Apoptosis/physiology , Carcinoma, Hepatocellular/pathology , Hepatocytes/enzymology , Liver Neoplasms/pathology , NADPH Oxidases/genetics , Transforming Growth Factor beta/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Fetus/cytology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genes, Reporter , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , NADPH Oxidase 4 , NADPH Oxidases/metabolism , RNA, Small Interfering , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription, Genetic/drug effects , Transcription, Genetic/physiology , Up-Regulation/drug effects , Up-Regulation/physiology
8.
J Cell Physiol ; 215(3): 846-55, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18286537

ABSTRACT

The "in vitro" establishment of a physiological model of bipotential liver progenitors would be useful for analyzing the molecular mechanisms involved in regulating growth and differentiation, as well as studying their potential role/s in liver physiology and pathology. The transforming growth factor-beta (TGF-beta) induces de-differentiation of fetal rat hepatocytes (FH), concomitant with changes in morphology. The aim of this work was to isolate and characterize this population of TGF-beta-treated fetal hepatocytes (TbetaT-FH) and test whether they can behave as liver progenitors. The TbetaT-FH isolated cell lines show high expression of Thy-1 and low expression of c-Kit. They express liver-specific proteins, such as albumin and alpha-fetoprotein, and mesenchymal markers, such as vimentin. TbetaT-FH maintain expression of the hnf3beta gene, but lose expression of hnf1beta, hnf4, and hnf6. They express c-met and show an increase in proliferation in response to HGF. Interestingly, the transdifferentiation process is coincident with changes in the expression of genes related to the oxidative metabolism. TbetaT-FH cultured in the presence of EGF + DMSO change morphology, towards epithelial cells, gaining expression of CK19 and c-Kit, markers found in hepatoblasts and bile duct cells. Furthermore, TbetaT-FH form duct-like structures when cultured on Matrigel. TbetaT-FH show also potential to revert to an hepatocyte phenotype when submitted to a long-term "in vitro" differentiation protocol towards hepatocytic lineage. In summary, our results support the hypothesis that hepatocytes can function as facultative liver stem cells and demonstrate that TGF-beta might play an essential role in the transdifferentiation process.


Subject(s)
Fetus/cytology , Fetus/drug effects , Hepatocytes/cytology , Hepatocytes/drug effects , Liver/cytology , Stem Cells/cytology , Transforming Growth Factor beta/pharmacology , Albumins/metabolism , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Lineage/drug effects , Cell Separation , Cell Survival/drug effects , Cells, Cultured , Dimethyl Sulfoxide/pharmacology , Humans , Liver/drug effects , Phenotype , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Stem Cells/drug effects
9.
Biochem J ; 405(2): 251-9, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17407446

ABSTRACT

The TGF-beta (transforming growth factor-beta) induces survival signals in foetal rat hepatocytes through transactivation of EGFR (epidermal growth factor receptor). The molecular mechanism is not completely understood, but both activation of the TACE (tumour necrosis factor alpha-converting enzyme)/ADAM17 (a disintegrin and metalloproteinase 17; one of the metalloproteases involved in shedding of the EGFR ligands) and up-regulation of TGF-alpha and HB-EGF (heparin-binding epidermal growth factor-like growth factor) appear to be involved. In the present study, we have analysed the molecular mechanisms that mediate up-regulation of the EGFR ligands by TGF-beta in foetal rat hepatocytes. The potential involvement of ROS (reactive oxygen species), an early signal induced by TGF-beta, and the existence of an amplification loop triggered by initial activation of the EGFR, have been studied. Results indicate that DPI (diphenyleneiodonium) and apocynin, two NOX (NADPH oxidase) inhibitors, and SB431542, an inhibitor of the TbetaR-I (TGF-beta receptor I), block up-regulation of EGFR ligands and Akt activation. Different members of the NOX family of genes are expressed in hepatocytes, included nox1, nox2 and nox4. TGF-beta up-regulates nox4 and increases the levels of Rac1 protein, a known regulator of both Nox1 and Nox2, in a TbetaR-I-dependent manner. TGF-beta mediates activation of the nuclear factor-kappaB pathway, which is inhibited by DPI and is required for up-regulation of TGF-alpha and HB-EGF. In contrast, EGFR activation is not required for TGF-beta-induced up-regulation of those ligands. Considering previous work that has established the role of ROS in apoptosis induced by TGF-beta in hepatocytes, the results of the present study indicate that ROS might mediate both pro- and anti-apoptotic signals in TGF-beta-treated cells.


Subject(s)
ErbB Receptors/metabolism , NADPH Oxidases/metabolism , NF-kappa B/physiology , Transforming Growth Factor beta/physiology , Acetophenones/pharmacology , Animals , Anthracenes/pharmacology , Benzamides/pharmacology , Chromones/pharmacology , Dioxoles/pharmacology , Enzyme Activation/drug effects , Epidermal Growth Factor/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Flavonoids/pharmacology , Heparin-binding EGF-like Growth Factor , Hepatocytes/enzymology , Humans , Imidazoles/pharmacology , Intercellular Signaling Peptides and Proteins , Morpholines/pharmacology , NADH, NADPH Oxidoreductases/biosynthesis , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/biosynthesis , Onium Compounds/pharmacology , Peptides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Quinazolines , Rats , Reactive Oxygen Species/pharmacology , Tyrphostins/pharmacology , Up-Regulation , rac1 GTP-Binding Protein/biosynthesis
10.
Comp Hepatol ; 6: 1, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-17311678

ABSTRACT

BACKGROUND: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-beta. We analyzed the oxidative stress induced by TGF-beta and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. RESULTS: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-beta administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-beta/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. CONCLUSION: The data provide evidence that TGF-beta induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage.

11.
J Cell Physiol ; 207(2): 322-30, 2006 May.
Article in English | MEDLINE | ID: mdl-16331683

ABSTRACT

Epidermal growth factor (EGF) is a survival signal for transforming growth factor-beta (TGF-beta)-induced apoptosis in hepatocytes, phosphatidylinositol 3-kinase (PI 3-K) being involved in this effect. Here, we analyze the possible cross talks between EGF and TGF-beta signals to understand how EGF impairs the early pro-apoptotic events induced by TGF-beta. Data have indicated that neither SMAD nor c-Jun NH2 Terminal Kinase (JNK) activations are altered by EGF, which clearly interferes with events directly related to the radical oxygen species (ROS) production, impairing oxidative stress, p38 MAP kinase activation, and cell death. Activation of a NADPH-oxidase-like system, which is responsible for the early ROS production by TGF-beta, is completely inhibited by EGF, through a PI 3-K-dependent mechanism. Activity of RAC1 increases by TGF-beta, but also by EGF, and both act synergistically to get maximum effects. Fetal rat hepatocytes express nox4, in addition to nox1 and nox2, and TGF-beta clearly upregulates nox4. EGF blocks up-regulation of nox4 by TGF-beta. Interestingly, in the presence of PI 3-K inhibitors, EGF is not able to counteract the nox4 upregulation by TGF-beta. Taking together these results indicate that impairment of TGF-beta-induced NADPH oxidase activation by EGF is a RAC1-independent process and correlates with an inhibition of the mechanisms that address the increase of nox4 mRNA levels by TGF-beta.


Subject(s)
Apoptosis/drug effects , Epidermal Growth Factor/pharmacology , Hepatocytes/metabolism , NADPH Oxidases/metabolism , Oxidative Stress/drug effects , Transforming Growth Factor beta/pharmacology , Animals , Caspase 3 , Caspases/metabolism , Cell Survival/drug effects , Cells, Cultured , Chromones/pharmacology , Enzyme Activation/drug effects , Fetus , Gene Expression/drug effects , Hepatocytes/drug effects , Models, Biological , Morpholines/pharmacology , NADPH Oxidases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Rats , Reactive Oxygen Species/metabolism , Smad2 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...