Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(6): e0281524, 2023.
Article in English | MEDLINE | ID: mdl-37267408

ABSTRACT

Bloom syndrome helicase (BLM) is a RecQ-family helicase implicated in a variety of cellular processes, including DNA replication, DNA repair, and telomere maintenance. Mutations in human BLM cause Bloom syndrome (BS), an autosomal recessive disorder that leads to myriad negative health impacts including a predisposition to cancer. BS-causing mutations in BLM often negatively impact BLM ATPase and helicase activity. While BLM mutations that cause BS have been well characterized both in vitro and in vivo, there are other less studied BLM mutations that exist in the human population that do not lead to BS. Two of these non-BS mutations, encoding BLM P868L and BLM G1120R, when homozygous, increase sister chromatid exchanges in human cells. To characterize these naturally occurring BLM mutant proteins in vitro, we purified the BLM catalytic core (BLMcore, residues 636-1298) with either the P868L or G1120R substitution. We also purified a BLMcore K869A K870A mutant protein, which alters a lysine-rich loop proximal to the P868 residue. We found that BLMcore P868L and G1120R proteins were both able to hydrolyze ATP, bind diverse DNA substrates, and unwind G-quadruplex and duplex DNA structures. Molecular dynamics simulations suggest that the P868L substitution weakens the DNA interaction with the winged-helix domain of BLM and alters the orientation of one lobe of the ATPase domain. Because BLMcore P868L and G1120R retain helicase function in vitro, it is likely that the increased genome instability is caused by specific impacts of the mutant proteins in vivo. Interestingly, we found that BLMcore K869A K870A has diminished ATPase activity, weakened binding to duplex DNA structures, and less robust helicase activity compared to wild-type BLMcore. Thus, the lysine-rich loop may have an important role in ATPase activity and specific binding and DNA unwinding functions in BLM.


Subject(s)
Bloom Syndrome , Humans , Bloom Syndrome/genetics , Bloom Syndrome/metabolism , Lysine , RecQ Helicases/genetics , RecQ Helicases/metabolism , DNA/metabolism , Mutant Proteins
2.
bioRxiv ; 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36747637

ABSTRACT

Bloom syndrome helicase (BLM) is a RecQ-family helicase implicated in a variety of cellular processes, including DNA replication, DNA repair, and telomere maintenance. Mutations in human BLM cause Bloom syndrome (BS), an autosomal recessive disorder that leads to myriad negative health impacts including a predisposition to cancer. BS-causing mutations in BLM often negatively impact BLM ATPase and helicase activity. While BLM mutations that cause BS have been well characterized both in vitro and in vivo , there are other less studied BLM mutations that exist in the human population that do not lead to BS. Two of these non-BS mutations, encoding BLM P868L and BLM G1120R, when homozygous, increase sister chromatid exchanges in human cells. To characterize these naturally occurring BLM mutant proteins in vitro , we purified the BLM catalytic core (BLM core , residues 636-1298) with either the P868L or G1120R substitution. We also purified a BLM core K869A K870A mutant protein, which alters a lysine-rich loop proximal to the P868 residue. We found that BLM core P868L and G1120R proteins were both able to hydrolyze ATP, bind diverse DNA substrates, and unwind G-quadruplex and duplex DNA structures. Molecular dynamics simulations suggest that the P868L substitution weakens the DNA interaction with the winged-helix domain of BLM and alters the orientation of one lobe of the ATPase domain. Because BLM core P868L and G1120R retain helicase function in vitro , it is likely that the increased genome instability is caused by specific impacts of the mutant proteins in vivo . Interestingly, we found that BLM core K869A K870A has diminished ATPase activity, weakened binding to duplex DNA structures, and less robust helicase activity compared to wild-type BLM core . Thus, the lysine-rich loop may have an important role in ATPase activity and specific binding and DNA unwinding functions in BLM.

3.
J Bacteriol ; 204(3): e0051821, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35041498

ABSTRACT

Natural transformation is one of the major mechanisms of horizontal gene transfer in bacterial populations and has been demonstrated in numerous species of bacteria. Despite the prevalence of natural transformation, much of the molecular mechanism remains unexplored. One major outstanding question is how the cell powers DNA import, which is rapid and highly processive. ComFA is one of a few proteins required for natural transformation in Gram-positive bacteria. Its structural resemblance to the DEAD box helicase family has led to a long-held hypothesis that ComFA acts as a motor to help drive DNA import into the cytosol. Here, we explored the helicase and translocase activity of ComFA to address this hypothesis. We followed the DNA-dependent ATPase activity of ComFA and, combined with mathematical modeling, demonstrated that ComFA likely translocates on single-stranded DNA from 5' to 3'. However, this translocase activity does not lead to DNA unwinding under the conditions we tested. Further, we analyzed the ATPase cycle of ComFA and found that ATP hydrolysis stimulates the release of DNA, providing a potential mechanism for translocation. These findings help define the molecular contribution of ComFA to natural transformation and support the conclusion that ComFA plays a key role in powering DNA uptake. IMPORTANCE Competence, or the ability of bacteria to take up and incorporate foreign DNA in a process called natural transformation, is common in the bacterial kingdom. Research in several bacterial species suggests that long, contiguous stretches of DNA are imported into cells in a processive manner, but how bacteria power transformation remains unclear. Our finding that ComFA, a DEAD box helicase required for competence in Gram-positive bacteria, translocates on single-stranded DNA from 5' to 3', supports the long-held hypothesis that ComFA may be the motor powering DNA transport during natural transformation. Moreover, ComFA may be a previously unidentified type of DEAD box helicase-one with the capability of extended translocation on single-stranded DNA.


Subject(s)
Adenosine Triphosphatases , DNA, Single-Stranded , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/metabolism , DNA , DNA Helicases/metabolism , DNA, Single-Stranded/genetics
4.
Crit Rev Biochem Mol Biol ; 57(5-6): 539-561, 2022.
Article in English | MEDLINE | ID: mdl-36999585

ABSTRACT

G-quadruplexes (G4s) are highly stable, non-canonical DNA or RNA structures that can form in guanine-rich stretches of nucleic acids. G4-forming sequences have been found in all domains of life, and proteins that bind and/or resolve G4s have been discovered in both bacterial and eukaryotic organisms. G4s regulate a variety of cellular processes through inhibitory or stimulatory roles that depend upon their positions within genomes or transcripts. These include potential roles as impediments to genome replication, transcription, and translation or, in other contexts, as activators of genome stability, transcription, and recombination. This duality suggests that G4 sequences can aid cellular processes but that their presence can also be problematic. Despite their documented importance in bacterial species, G4s remain understudied in bacteria relative to eukaryotes. In this review, we highlight the roles of bacterial G4s by discussing their prevalence in bacterial genomes, the proteins that bind and unwind G4s in bacteria, and the processes regulated by bacterial G4s. We identify limitations in our current understanding of the functions of G4s in bacteria and describe new avenues for studying these remarkable nucleic acid structures.


Subject(s)
G-Quadruplexes , DNA/genetics , Bacteria/genetics , RNA/chemistry , Eukaryota/genetics
5.
Nucleic Acids Res ; 48(12): 6640-6653, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32449930

ABSTRACT

G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.


Subject(s)
DNA Helicases/chemistry , DNA Replication/genetics , DNA-Binding Proteins/chemistry , Escherichia coli Proteins/chemistry , G-Quadruplexes , Rec A Recombinases/chemistry , Adenosine Triphosphate/chemistry , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Ligands , Nucleic Acid Conformation , Rec A Recombinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...