Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 16(2): 191-202, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24438900

ABSTRACT

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. METHODS: MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. RESULTS: Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. CONCLUSIONS: Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cells/immunology , T-Lymphocytes/immunology , Adult , Aged , Antigens, CD/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Cytokines/metabolism , Female , Humans , Immunosuppression Therapy , Inflammation Mediators/metabolism , Lymphocyte Activation , Male , Middle Aged
2.
Mol Ther ; 20(9): 1767-77, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22760541

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GMCSF) and MCP3 (aka CCL7) exert complementary, nonoverlapping, proimmune effects on responsive lymphoid and myeloid cells. We hypothesized that a synthetic cytokine linking GMCSF to MCP3 (hereafter GMME3) as part of a single polypeptide would acquire novel, therapeutically desirable immunomodulatory properties. We demonstrate that GMME3 has enhanced CC-chemokine receptor (CCR)-mediated intracellular Ca(++) mobilization with selective effects on the CD21(hi)CD24(hi) CD1.d(hi) subset of splenic B cells inducing substantial interleukin 10 (IL10) production. We demonstrate that B(GMME3) exert their suppressive effect through an IL10-mediated inhibition of antigen presentation. More importantly, B(GMME3) inhibit the reactivation of encephalomyelitis (EAE)-derived or TGFß/IL6 differentiated Th17 cells by altering their polarization toward a Th1 or Th2 phenotype. The secretion of interferon-γ (IFNγ) and IL4 in turn inhibits IL17 production. The adoptive transfer of B(GMME3), but not IL10(-/-) B(GMME3) cells, to mice symptomatic with experimental autoimmune encephalitis significantly improves their disease score and inhibits lymphoid infiltration into the central nervous system (CNS). We propose that designed CCR modulators such as GMME3, allows for conversion of naive B-cells to a novel suppressor phenotype allowing for the personalized cell therapy of autoimmune ailments.


Subject(s)
B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/therapy , Immunotherapy , Inflammation/therapy , Interleukin-10/immunology , Th17 Cells/immunology , Adoptive Transfer , Animals , Antigen Presentation , B-Lymphocytes/metabolism , Calcium/immunology , Calcium/metabolism , Cell Differentiation , Central Nervous System/immunology , Central Nervous System/pathology , Chemokine CCL7/genetics , Chemokine CCL7/immunology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , HEK293 Cells , Humans , Immunomodulation , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-10/biosynthesis , Mice , Mice, Transgenic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Spleen/immunology , Spleen/pathology , Th17 Cells/metabolism
3.
Biomaterials ; 32(1): 295-305, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20864158

ABSTRACT

Gene therapy for hemophilia B and other hereditary plasma protein deficiencies showed great promise in pre-clinical and early clinical trials. However, safety concerns about in vivo delivery of viral vectors and poor post-transplant survival of ex vivo modified cells remain key hurdles for clinical translation of gene therapy. We here describe a 3D scaffold system based on porous hydroxyapatite-PLGA composites coated with biomineralized collagen 1. When combined with autologous gene-engineered factor IX (hFIX) positive mesenchymal stem cells (MSCs) and implanted in hemophilic mice, these scaffolds supported long-term engraftment and systemic protein delivery by MSCs in vivo. Optimization of the scaffolds at the macro-, micro- and nanoscales provided efficient cell delivery capacity, MSC self-renewal and osteogenesis respectively, concurrent with sustained delivery of hFIX. In conclusion, the use of gene-enhanced MSC-seeded scaffolds may be of practical use for treatment of hemophilia B and other plasma protein deficiencies.


Subject(s)
Genetic Therapy/methods , Hemophilia B/therapy , Mesenchymal Stem Cells/metabolism , Tissue Scaffolds/chemistry , Animals , Calcium Phosphates/pharmacology , Cell Lineage/drug effects , Cell Proliferation/drug effects , Ceramics/pharmacology , Factor IX/genetics , Factor IX/therapeutic use , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/ultrastructure , Mice , Nanoparticles/ultrastructure , Particle Size , Porosity/drug effects
4.
J Immunol ; 185(11): 7014-25, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20971926

ABSTRACT

Recent findings indicate that NK cells are involved in cardiac repair following myocardial infarction. The aim of this study is to investigate the role NK cells in infarct angiogenesis and cardiac remodeling. In normal C57BL/6 mice, myelomonocytic inflammatory cells invaded infarcted heart within 24 h followed by a lymphoid/NK cell infiltrate by day 6, accompanied by substantial expression of IL-2, TNF-α, and CCL2. In contrast, NOD SCID mice had virtually no lymphoid cells infiltrating the heart and did not upregulate IL-2 levels. In vitro and in vivo, IL-2-activated NK cells promoted TNF-α-stimulated endothelial cell proliferation, enhanced angiogenesis and reduced fibrosis within the infarcted myocardium. Adoptive transfer of IL-2-activated NK cells to NOD SCID mice improved post-myocardial infarction angiogenesis. RNA silencing technology and neutralizing Abs demonstrated that this process involved α4ß7 integrin/VCAM-1 and killer cell lectin-like receptor 1/N-cadherin-specific binding. In this study, we show that IL-2-activated NK cells reduce myocardial collagen deposition along with an increase in neovascularization following acute cardiac ischemia through specific interaction with endothelial cells. These data define a potential role of activated NK cells in cardiac angiogenesis and open new perspectives for the treatment of ischemic diseases.


Subject(s)
Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Integrins/biosynthesis , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neovascularization, Physiologic/immunology , Receptors, Immunologic/biosynthesis , Animals , Cell Communication/immunology , Cell Proliferation , Cells, Cultured , Chemotaxis, Leukocyte/immunology , Cytotoxicity Tests, Immunologic , Endothelium, Vascular/cytology , Integrins/physiology , Interleukin-2/physiology , Lectins, C-Type , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Receptors, Immunologic/physiology , Tumor Necrosis Factor-alpha/physiology
5.
Mol Ther ; 18(7): 1293-301, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20389285

ABSTRACT

We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Ralpha-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21's aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-alpha, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Ralpha(+) lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Ralpha(+) lymphocytes, we tested its cytolytic effect on IL-21Ralpha(+) EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Ralpha agonist that co-opts IL-21Ralpha-dependent signaling in a manner permissive for targeted cancer immunotherapy.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-21 Receptor alpha Subunit/metabolism , Interleukins/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/physiology , Animals , Apoptosis/drug effects , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cell Line , Cells, Cultured , Cytokines/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Interleukins/genetics , Macrophages/drug effects , Macrophages/metabolism , Melanoma, Experimental/metabolism , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Recombinant Fusion Proteins/genetics , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
6.
Stem Cells ; 27(2): 467-77, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19338064

ABSTRACT

Mesenchymal stromal cells (MSCs) display robust reparative properties through their ability to limit apoptosis, enhance angiogenesis, and direct positive tissue remodeling. However, low in vivo survival of transplanted cells limits their overall effectiveness and significantly affects their clinical usage. Consequently, identifying strategies to improve cell survival in vivo are a priority. One explanation for their low survival is that MSCs are often transplanted into ischemic tissue, such as infarcted myocardium, where there is poor blood supply and low oxygen tension. Therefore, we examined how MSCs respond to a hypoxic, nutrient-poor stress environment to identify trophic factors that could be manipulated in advance of MSC transplantation. Combining microarray and proteomic screens we identified plasminogen activator inhibitor 1 (PAI-1) as one factor consistently upregulated in our in vitro ischemia-mimicking conditions. Subsequent genetic and chemical manipulation studies define PAI-1 as a negative regulator of MSC survival in vivo. Mechanistically, MSC-derived PAI-1 does not alter MSC survival through a plasmin-dependent mechanism but rather directly impacts on the adhesiveness of MSCs to their surrounding matrices. Thus we can conclude that post-transplantation, PAI-1 negatively impacts MSC survival by promoting anoikis via matrix detachment.


Subject(s)
Mesenchymal Stem Cell Transplantation , Plasminogen Activator Inhibitor 1/physiology , Animals , Blotting, Western , Cell Adhesion/genetics , Cell Adhesion/physiology , Cell Movement/genetics , Cell Movement/physiology , Cells, Cultured , Female , Humans , Mice , Mice, Inbred C57BL , Myocardial Ischemia , Oligonucleotide Array Sequence Analysis , Plasminogen Activator Inhibitor 1/metabolism , Proteomics , Reverse Transcriptase Polymerase Chain Reaction
7.
Am J Physiol Renal Physiol ; 295(2): F488-96, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18524862

ABSTRACT

We previously demonstrated that erythropoietin (EPO)-secreting mesenchymal stromal cells (MSC) can be used for the long-term correction of renal failure-induced anemia. The present study provides evidence that coimplantation of insulin-like growth factor I (IGF-I)-overexpressing MSC (MSC-IGF) improves MSC-based gene therapy of anemia by providing paracrine support to EPO-secreting MSC (MSC-EPO) within a subcutaneous implant. IGF-I receptor RNA expression in murine MSC was demonstrated by RT-PCR. Functional protein expression was confirmed by immunoblots and MSC responsiveness to IGF-I stimulation in vitro. IGF-I was also shown to improve MSC survival following staurosporin-induced apoptosis in vitro. A cohort of C57Bl/6 mice was rendered anemic by right kidney electrocoagulation and left nephrectomy. MSC-EPO were subsequently admixed in a bovine collagen matrix and implanted, in combination with MSC-IGF or MSC null, by subcutaneous injection in renal failure mice. In mice receiving MSC-EPO coimplanted with MSC-IGF, hematocrit elevation was greater and enhanced compared with control mice; heart function was also improved. MSC-IGF coimplantation, therefore, represents a promising new strategy for enhancing MSC survival within implanted matrices and for improving cell-based gene therapy of renal anemia.


Subject(s)
Anemia/therapy , Genetic Engineering/methods , Genetic Therapy/methods , Insulin-Like Growth Factor I/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Renal Insufficiency/therapy , Anemia/etiology , Anemia/metabolism , Animals , Apoptosis , Cells, Cultured , Disease Models, Animal , Erythropoietin/metabolism , Female , Hematocrit , Insulin-Like Growth Factor I/genetics , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Receptor, IGF Type 1/metabolism , Renal Insufficiency/complications , Renal Insufficiency/metabolism
8.
Cardiovasc Res ; 79(3): 405-15, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18397963

ABSTRACT

AIMS: Mesenchymal stromal cells (MSCs) possess intrinsic features that identify them as useful for treating ischaemic syndromes. Poor in vivo survival/engraftment of MSCs, however, limits their overall effectiveness. In this work, we tested whether genetically engineering MSCs to secrete erythropoietin (Epo) could represent a better therapeutic platform than MSCs in their native form. METHODS AND RESULTS: MSCs from C57Bl/6 mice were retrovirally transduced with either an empty vector or one that causes the production of Epo and were then analysed for the alterations in angiogenic and survival potential. Using a mouse model of myocardial infarction (MI), the regenerative potential of null MSCs and Epo-overexpressing MSCs (Epo+MSCs) was assessed using serial echocardiogram and invasive haemodynamic measurements. Infarct size, capillary density and neutrophil influx were assessed using histologic techniques. Using in vitro assays coupled with an in vivo Matrigel plug assay, we demonstrate that engineering MSCs to express Epo does not alter their immunophenotype or plasticity. However, relative to mock-modified MSCs [wild-type (WT)-MSCs], Epo+MSCs are more resilient to apoptotic stimuli and initiate a more robust host-derived angiogenic response. We also identify and characterize the autocrine loop established on MSCs by having them secrete Epo. Furthermore, in a murine model of MI, animals receiving intracardiac injections of Epo+MSCs exhibited significantly enhanced cardiac function compared with WT-MSCs and saline-injected control animals post-MI, owing to the increased myocardial capillary density and the reduced neutrophilia. CONCLUSION: Epo overexpression enhances the cellular regenerative properties of MSCs by both autocrine and paracrine pathways.


Subject(s)
Erythropoietin/biosynthesis , Genetic Therapy/methods , Myocardial Infarction/therapy , Myocardium/metabolism , Regeneration , Stromal Cells/transplantation , Animals , Apoptosis , Autocrine Communication , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Disease Models, Animal , Erythropoietin/genetics , Female , Mice , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Myocardial Infarction/physiopathology , Myocardium/pathology , Neovascularization, Physiologic , Neutrophil Infiltration , Paracrine Communication , Stromal Cells/metabolism , Transduction, Genetic , Ventricular Function, Left , Ventricular Remodeling
9.
Am J Physiol Heart Circ Physiol ; 287(3): H1207-13, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15130893

ABSTRACT

Gas6 is a gamma-carboxylated ligand for the receptor tyrosine kinase Axl. Gas6-Axl interactions can rescue endothelial cells from apoptosis, and this study examined the intracellular signaling mechanisms responsible for this phenomenon. Using flow cytometry, we first confirmed that Gas6 can abrogate apoptosis induced by serum starvation of primary cultures of human umbilical vein endothelial cells (HUVECs). This effect is mediated through phosphorylation of the serine-threonine kinase Akt, with maximal phosphorylation observed after 4 h of treatment with 100 ng/ml Gas6. Inhibition of Akt phosphorylation and abrogation of gas6-mediated survival of HUVECs by wortmannin implicated phosphatidylinositol 3-kinase as the mediator of Akt phosphorylation. Dominant negative Akt constructs largely abrogated the protective effect of Gas6 on HUVECs, underscoring the importance of Akt activation in Gas6-mediated survival. Several downstream regulators of this survival pathway were identified in HUVECs, namely, NF-kappaB as well as the antiapoptotic and proapoptotic proteins Bcl-2 and caspase 3, respectively. We showed that NF-kappaB is phosphorylated early after Gas6 treatment as evidenced by doublet formation on Western blotting. As well, the level of Bcl-2 protein increased, supporting the notion that the Bcl-2 antiapoptotic pathway is stimulated. The levels of expression of the caspase 3 activation products p12 and p20 decreased with Gas6 treatment, consistent with a reduction in proapoptotic caspase 3 activation. Taken together, these experiments provide new information about the mechanism underlying Gas6 protection from apoptosis in primary endothelial cell cultures.


Subject(s)
Endothelium, Vascular/physiology , Intercellular Signaling Peptides and Proteins/physiology , Intracellular Membranes/metabolism , Oncogene Proteins/physiology , Receptor Protein-Tyrosine Kinases/physiology , Signal Transduction/physiology , Apoptosis/drug effects , Apoptosis/physiology , Caspase 3 , Caspases/physiology , Cell Survival/physiology , Cells, Cultured , Culture Media, Serum-Free/pharmacology , Endothelium, Vascular/cytology , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , NF-kappa B/physiology , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2/physiology , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...