Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 208: 103492, 2019 09 30.
Article in English | MEDLINE | ID: mdl-31434010

ABSTRACT

Protein malnutrition is a risk factor for developing visceral leishmaniasis. Because we previously demonstrated that protein malnutrition and infection with Leishmania infantum disrupts the splenic microarchitecture in BALB/c mice, alters T cell-subsets and increases splenic parasite load, we hypothesize that splenic microenvironment is precociously compromised in infected animals that suffered a preceding malnutrition. To evaluate this, we characterized the abundance of proteins secreted in the splenic interstitial fluid (IF) using an iTRAQ-based quantitative proteomics approach. In addition, local levels of pro-inflammatory and proliferation molecules were analyzed. Whereas well-nourished infected animals showed increased IL-1ß and IL-2 levels, malnourished-infected mice displayed significant reduction of these cytokines. Remarkably, a two-weeks infection with L. infantum already modified protein abundance in the splenic IF of well-nourished mice, but malnourished animals failed to respond to infection in the same fashion. Malnutrition induced significant reduction of chemotactic and pro-inflammatory molecules as well as of proteins involved in nucleic acid and amino acid metabolism, indicating an impaired proliferative microenvironment. Accordingly, a significant decrease in Ki67 expression was observed, suggesting that splenocyte proliferation is compromised in malnourished animals. Together, our results show that malnutrition compromises the splenic microenvironment and alters the immune response to the parasite in malnourished individuals. SIGNIFICANCE: Protein malnutrition is recognized as an important epidemiological risk factor for developing visceral leishmaniasis (VL). Locally secreted factors present in the interstitial fluid have important roles in initiating immune responses and in regulating fluid volume during inflammation. However, the regulation of secreted factors under pathological conditions such as malnutrition and infection are widely unknown. To analyze how protein malnutrition alters secreted proteins involved in the immune response to L. infantum infection we evaluated the proteomic profile of the interstitial fluid of the spleen in malnourished BALB/c mice infected with L. infantum. Our work revealed new elements that contribute to the understanding of the immunopathological events in the spleen of malnourished animals infected with L. infantum and opens new pathways for consideration of other aspects that could improve VL treatment in malnourished individuals.


Subject(s)
Cell Proliferation , Extracellular Fluid/metabolism , Gene Expression Profiling , Leishmania infantum/metabolism , Leishmaniasis, Visceral/metabolism , Malnutrition/metabolism , Proteomics , Spleen/metabolism , Animals , Extracellular Fluid/parasitology , Inflammation/metabolism , Inflammation/parasitology , Inflammation/pathology , Leishmaniasis, Visceral/pathology , Male , Malnutrition/parasitology , Malnutrition/pathology , Mice , Mice, Inbred BALB C , Spleen/parasitology , Spleen/pathology
2.
Article in English | MEDLINE | ID: mdl-31355153

ABSTRACT

Detrimental effects of malnutrition on immune responses to pathogens have long been recognized and it is considered a main risk factor for various infectious diseases, including visceral leishmaniasis (VL). Thymus is a target of both malnutrition and infection, but its role in the immune response to Leishmania infantum in malnourished individuals is barely studied. Because we previously observed thymic atrophy and significant reduction in cellularity and chemokine levels in malnourished mice infected with L. infantum, we postulated that the thymic microenvironment is severely compromised in those animals. To test this, we analyzed the microarchitecture of the organ and measured the protein abundance in its interstitial space in malnourished BALB/c mice infected or not with L. infantum. Malnourished-infected animals exhibited a significant reduction of the thymic cortex:medulla ratio and altered abundance of proteins secreted in the thymic interstitial fluid. Eighty-one percent of identified proteins are secreted by exosomes and malnourished-infected mice showed significant decrease in exosomal proteins, suggesting that exosomal carrier system, and therefore intrathymic communication, is dysregulated in those animals. Malnourished-infected mice also exhibited a significant increase in the abundance of proteins involved in lipid metabolism and tricarboxylic acid cycle, suggestive of a non-proliferative microenvironment. Accordingly, flow cytometry analysis revealed decreased proliferation of single positive and double positive T cells in those animals. Together, the reduced cortical area, decreased proliferation, and altered protein abundance suggest a dysfunctional thymic microenvironment where T cell migration, proliferation, and maturation are compromised, contributing for the thymic atrophy observed in malnourished animals. All these alterations could affect the control of the local and systemic infection, resulting in an impaired response to L. infantum infection.


Subject(s)
Host-Pathogen Interactions/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Malnutrition/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Biological Transport , Cell Movement , Cell Proliferation , Citric Acid Cycle/genetics , Citric Acid Cycle/immunology , Exosomes/immunology , Exosomes/metabolism , Exosomes/parasitology , Extracellular Fluid/immunology , Extracellular Fluid/metabolism , Extracellular Fluid/parasitology , Galectin 1/genetics , Galectin 1/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Immunity, Innate , Leishmania infantum/growth & development , Leishmaniasis, Visceral/genetics , Leishmaniasis, Visceral/metabolism , Leishmaniasis, Visceral/parasitology , Lipid Metabolism , Male , Malnutrition/genetics , Malnutrition/metabolism , Malnutrition/parasitology , Mice , Mice, Inbred BALB C , Plasminogen/genetics , Plasminogen/immunology , Proteome/genetics , Proteome/immunology , T-Lymphocytes/parasitology , Thymus Gland/metabolism , Thymus Gland/parasitology
4.
Sci Rep ; 7: 45991, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397794

ABSTRACT

Protein malnutrition, the most deleterious cause of malnutrition in developing countries, has been considered a primary risk factor for the development of clinical visceral leishmaniasis (VL). Protein malnutrition and infection with Leishmania infantum leads to lymphoid tissue disorganization, including changes in cellularity and lymphocyte subpopulations in the thymus and spleen. Here we report that protein malnutrition modifies thymic chemotactic factors by diminishing the CCL5, CXCL12, IGF1, CXCL9 and CXCL10 protein levels in infected animals. Nevertheless, T cells preserve their migratory capability, as they were able to migrate ex vivo in response to chemotactic stimuli, indicating that malnutrition may compromise the thymic microenvironment and alter in vivo thymocyte migration. Decrease in chemotactic factors protein levels was accompanied by an early increase in the parasite load of the spleen. These results suggest that the precondition of malnutrition is affecting the cell-mediated immune response to L. infantum by altering T cell migration and interfering with the capacity of protein-deprived animals to control parasite spreading and proliferation. Our data provide evidence for a disturbance of T lymphocyte migration involving both central and peripheral T-cells, which likely contribute to the pathophysiology of VL that occurs in malnourished individuals.


Subject(s)
Cell Movement , Leishmania infantum/pathogenicity , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/immunology , Malnutrition/complications , Malnutrition/immunology , T-Lymphocytes/pathology , Thymus Gland/pathology , Animals , Apoptosis , Atrophy , Body Weight , Chemotaxis , Cytokines/blood , Insulin-Like Growth Factor I/metabolism , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Leptin/blood , Ligands , Macrophages/metabolism , Macrophages/pathology , Malnutrition/blood , Malnutrition/parasitology , Mice, Inbred BALB C , Parasite Load , Parasites/pathogenicity , Receptors, CXCR3/metabolism , Spleen/parasitology , Thymocytes/pathology
5.
Vet Parasitol ; 226: 57-64, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27514885

ABSTRACT

Leishmania infantum is one of the causative agents of visceral leishmaniasis (VL). VL is the most severe form of leishmaniasis and can be fatal if it is not properly treated. Although several PCR works are intended to detect L. infantum, in silico analysis of available primers and/or primer-probes reveals potential cross species amplification. Here, a TaqMan-based quantitative real time PCR (qPCR) assay was developed for specific detection and quantitation of L. infantum in tissue samples from experimentally or naturally infected animals, mice or dogs, respectively. For this assay, primers and probes were designed for the kinetoplast minicircle DNA of L. infantum. The qPCR assay achieved a detection limit of 0.01pg of parasite DNA, and allowed specific amplification of L. infantum in both asymptomatic and symptomatic naturally infected dogs with inter-assay variation coefficients between 0.05-0.11. There was no cross amplification with dog DNA or with L. braziliensis, L. donovani, L. major, L. tropica or Trypanosoma cruzi. In addition, our assay detected a significantly higher parasite load in symptomatic than in the asymptomatic animals (p<0.0001). We believe this approach will be a valuable tool for the specific detection of L. infantum in regions of sympatric transmission of VL-causing parasites.


Subject(s)
Dog Diseases/parasitology , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/veterinary , Animals , Base Sequence , Cricetinae , DNA Primers/chemistry , DNA, Protozoan/chemistry , Dogs , Leishmania infantum/genetics , Leishmania infantum/growth & development , Leishmaniasis, Visceral/parasitology , Liver/parasitology , Mice , Mice, Inbred BALB C , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Spleen/parasitology
6.
PLoS One ; 9(12): e114584, 2014.
Article in English | MEDLINE | ID: mdl-25535967

ABSTRACT

Visceral leishmaniasis (VL) is a parasitic infectious disease that causes significant morbidity and mortality in the tropical and subtropical regions of the world. Although infections with visceralizing Leishmania may be asymptomatic, factors such as undernutrition increase the likelihood of progressing to clinical disease. Protein malnutrition, the most deleterious cause of malnutrition in developing countries, has been considered as a primary risk factor for the development of clinical VL. However, data regarding the immunological basis of this association are scarce. With the aim to analyze the effects of protein malnutrition on Leishmania infantum infection, we used BALB/c mice subjected to control or low protein isocaloric diets. Each animal group was divided into two subgroups and one was infected with L. infantum resulting in four study groups: animals fed 14% protein diet (CP), animals fed 4% protein diet (LP), animals fed 14% protein diet and infected (CPi), and animals fed 4% protein diet and infected (LPi).The susceptibility to L. infantum infection and immune responses were assessed in terms of body and lymphoid organ weight, parasite load, lymphocyte subpopulations, and cytokine expression. LPi mice had a significant reduction of body and lymphoid organ weight and exhibited a severe decrease of lymphoid follicles in the spleen. Moreover, LPi animals showed a significant decrease in CD4+CD8+ T cells in the thymus, whereas there was an increase of CD4+ and CD8+ T cells percentages in the spleen. Notably, the cytokine mRNA levels in the thymus and spleen of protein malnourished-infected animals were altered compared to the CP mice. Protein malnutrition results in a drastic dysregulation of T cells and cytokine expression in the thymus and spleen of L. infantum-infected BALB/c mice, which may lead to defective regulation of the thymocyte population and an impaired splenic immune response, accelerating the events of a normal course of infection.


Subject(s)
Cytokines/metabolism , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Malnutrition/immunology , Malnutrition/parasitology , Spleen/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Animals , Body Weight , Diet, Protein-Restricted , Extracellular Fluid/metabolism , Leishmaniasis, Visceral/parasitology , Liver/immunology , Liver/parasitology , Liver/pathology , Mice, Inbred BALB C , Organ Size , Parasite Load , Spleen/parasitology , Spleen/pathology , Thymus Gland/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...