Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 903: 165984, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37574072

ABSTRACT

Currently, discharge regulations for wastewater treatment plants (WWTPs) are based on conventional parameters, but more is needed to ensure safe water reuse. In particular, emerging pollutants, as antimicrobials and antibiotic resistance genes (ARGs), are not considered. This research focuses on the fate of emerging biological contaminants during wastewater treatment in Mexico City. intI1 and the ARGs cphA-02, OXA-10 and sul1 were analyzed by qPCR; pathogenic bacteria species were characterized by high throughput sequencing of complete 16S rRNA gene, and fragments of SARS-CoV-2 were quantified by RT-qPCR. Conventional parameters (chemical oxygen demand and coliform bacteria) were also determined. Two sampling campaigns (rainy and dry seasons) were carried out in four municipal WWTPs in Mexico City, representing five biological treatment processes: conventional activated sludge, extended aeration activated sludge, membrane bioreactor, direct anaerobic digestion, and constructed wetland, followed by ultraviolet light or chlorine disinfection. In most cases, gene fragments of SARS-CoV-2 were eliminated below the detection limit of RT-qPCR. The abundance of intI1 positively correlated with the sul1, OXA-10, and cphA-02 abundances; intI1 and the ARGs here studied were partially removed in the WWTPs, and in most cases, the number of copies per second discarded in the sludge were higher those in the effluent. The treatment processes decreased the abundance of dominant bacterial groups in the raw wastewater, while enriching bacterial groups in the effluent and the biological sludge, with possible pollutant removal capabilities. Bacterial communities in the raw wastewater showed the predominance of the genus Arcobacter (from 62.4 to 86.0 %) containing potentially pathogenic species. Additionally, DNA of some species persisted after the treatment processes: A. johnsonii, A. junii, A. caviae, A. hydrophila, A. veronii, A. butzleri, A. cryaerophilus, Chryseobacterium indologenes, Hafnia paralvei, M. osloensis, Pseudomonas putida and Vibrio cholerae, which deserves special attention in future regulation for safe water reuse.

2.
Chemosphere ; 313: 137383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36436581

ABSTRACT

Primary sludge (PS) is associated with public health and environmental risks, so regulations focus on reducing the pathogenic and heavy metal contents of the treated material (biosolids), intended for soil amendments and land reclamation. The regulations set limits for Escherichia coli (or fecal coliforms), Salmonella spp., helminth eggs and enterovirus. However, the potential risk due to antibiotic resistant bacteria (ARB) and other human potential pathogenic bacteria (HPB) are not considered. In this work, three sludge treatment processes, having in common an anaerobic digestion step, were applied to assess the removal of regulated bacteria (fecal coliforms, Salmonella spp), ARB and HPB. The treatment arrangements, fed with PS from a full-scale wastewater treatment plant were: 1) Mesophilic anaerobic digestion followed by alkaline stabilization post-treatment (MAD-CaO); 2) Thermophilic anaerobic digestion (TAD) and, 3) Pre-treatment (mild thermo-hydrolysis) followed by TAD (PT-TAD). The results address the identification, quantification (colony forming units) and taxonomic characterization of ARB resistant to ß-lactams and vancomycin, as well as the taxonomic characterization of HPB by sequencing with PacBio. In addition, quantification based on culture media of fecal coliforms and Salmonella spp. is presented. The capabilities and limitations of microbiological and metataxonomomic analyses based on PacBio sequencing are discussed, emphasizing that they complement each other. Genus Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Escherichia, Klebsiella, Ochrobactrum, Pseudomonas and Raoultella, among others, were found in the PS, which are of clinical or environmental importance, being either HPB, HPB-ARB, or non-pathogenic ARB with the potentiality of horizontal gene transfer. Based on the analysis of fecal coliforms and Salmonella spp., the three processes produced class A (highest) biosolids, suitable for unrestricted agriculture applications. Mild thermo-hydrolisis was effective in decreasing ARB cultivability, but it reappeared after the following TAD. O. intermedium (HPB-ARB) was enriched in MAD and TAD while Laribacter hongkongensis (HPB) did persist after the applied treatments.


Subject(s)
Angiotensin Receptor Antagonists , Sewage , Humans , Sewage/microbiology , Anaerobiosis , Hydrolysis , Biosolids , Angiotensin-Converting Enzyme Inhibitors , Bacteria , Salmonella , Escherichia coli , Drug Resistance, Microbial , Digestion , Bacteria, Anaerobic
3.
Curr Med Chem ; 30(1): 5-29, 2022.
Article in English | MEDLINE | ID: mdl-35927898

ABSTRACT

The World Health Organization (WHO) ranks antimicrobial resistance (AMR) and various pathogens among the top 10 health threats. It is estimated that by 2050, the number of human deaths due to AMR will reach 10 million annually. On the other hand, several infectious outbreaks such as SARS, H1N1 influenza, Ebola, Zika fever, and COVID-19 have severely affected human populations worldwide in the last 20 years. These recent global diseases have generated the need to monitor outbreaks of pathogens and AMR to establish effective public health strategies. This review presents AMR and pathogenicity associated with wastewater treatment plants (WWTP), focusing on Next Generation Sequencing (NGS) monitoring as a complementary system to clinical surveillance. In this regard, WWTP may be monitored at three main points. First, at the inlet (raw wastewater or influent) to identify a broad spectrum of AMR and pathogens contained in the excretions of residents served by sewer networks, with a specific spatio-temporal location. Second, at the effluent, to ensure the elimination of AMR and pathogens in the treated water, considering the rising demand for safe wastewater reuse. Third, in sewage sludge or biosolids, their beneficial use or final disposal can represent a significant risk to public health. This review is divided into two sections to address the importance and implications of AMR and pathogen surveillance in wastewater and WWTP, based on NGS. The first section presents the fundamentals of surveillance techniques applied in WWTP (metataxonomics, metagenomics, functional metagenomics, metaviromics, and metatranscriptomics). Their scope and limitations are analyzed to show how microbiological and qPCR techniques complement NGS surveillance, overcoming its limitations. The second section discusses the contribution of 36 NGS research papers on WWTP surveillance, highlighting the current situation and perspectives. In both sections, research challenges and opportunities are presented.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Water Purification , Zika Virus Infection , Zika Virus , Humans , Wastewater , Anti-Bacterial Agents , Virulence , Drug Resistance, Bacterial , Sewage , High-Throughput Nucleotide Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...