Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(5): e0178306, 2017.
Article in English | MEDLINE | ID: mdl-28542562

ABSTRACT

Extracellular vesicles (EVs) have been identified within different body fluids and cell culture media. However, there is very little information on the secretion of these vesicles during early embryonic development. The aims of this work were first to demonstrate the secretion of extracellular vesicles by pre-implantation bovine embryos and second to identify and characterize the population of EVs secreted by bovine blastocysts during the period from day seven to nine of embryo culture and its correlation with further embryo development up to day 11. Bovine embryos were produced by in vitro fertilization (IVF) or parthenogenetic activation (PA) and cultured until blastocyst stage. Blastocyst selection was performed at day 7 post IVF/PA considering two variables: stage of development and quality of embryos. Selected blastocysts were cultured in vitro for 48 hours in groups (exp. 1) or individually (exp. 2) in SOF media depleted of exosomes. At day 9 post IVF/PA the media was collected and EVs isolated by ultracentrifugation. Transmission electron microscopy revealed the presence of heterogeneous vesicles of different sizes and population: microvesicles (MVs) and exosomes (EXs) of rounded shape, enclosed by a lipid bi-layer and ranging from 30 to 385 nm of diameter. Flow cytometry analysis allowed identifying CD63 and CD9 proteins as exosome markers. Nanoparticle tracking analysis generated a large number of variables, which required the use of multivariate statistics. The results indicated that the concentration of vesicles is higher in those blastocysts with arrested development from day 9 up to day 11 of in vitro development (6.7 x 108 particles/ml) derived from IVF (p <0.05), compared to PA blastocysts (4.7 x 108 particles/ml). Likewise, the profile (concentration and diameter) of particles secreted by embryos derived from IVF were different from those secreted by PA embryos. In conclusion, we demonstrated that bovine blastocysts secrete MVs/EXs to the culture media. Data suggest that characteristics of the population of EVs vary depending on embryo competence.


Subject(s)
Blastocyst/physiology , Extracellular Vesicles/physiology , Animals , Cattle , Culture Media , Embryo Culture Techniques/methods , Extracellular Vesicles/ultrastructure , In Vitro Techniques , Microscopy, Electron, Transmission , Nanoparticles/metabolism
2.
PLoS One ; 10(4): e0123964, 2015.
Article in English | MEDLINE | ID: mdl-25893243

ABSTRACT

Hemocytes in the circulation and kidney islets, as well as their phagocytic responses to microorganisms and fluorescent beads, have been studied in Pomacea canaliculata, using flow cytometry, light microscopy (including confocal laser scanning microscopy) and transmission electron microscopy (TEM). Three circulating hemocyte types (hyalinocytes, agranulocytes and granulocytes) were distinguished by phase contrast microscopy of living cells and after light and electron microscopy of fixed material. Also, three different populations of circulating hemocytes were separated by flow cytometry, which corresponded to the three hemocyte types. Hyalinocytes showed a low nucleus/cytoplasm ratio, and no apparent granules in stained material, but showed granules of moderate electron density under TEM (L granules) and at least some L granules appear acidic when labeled with LysoTracker Red. Both phagocytic and non-phagocytic hyalinocytes lose most (if not all) L granules when exposed to microorganisms in vitro. The phagosomes formed differed whether hyalinocytes were exposed to yeasts or to Gram positive or Gram negative bacteria. Agranulocytes showed a large nucleus/cytoplasm ratio and few or no granules. Granulocytes showed a low nucleus/cytoplasm ratio and numerous eosinophilic granules after staining. These granules are electron dense and rod-shaped under TEM (R granules). Granulocytes may show merging of R granules into gigantic ones, particularly when exposed to microorganisms. Fluorescent bead exposure of sorted hemocytes showed phagocytic activity in hyalinocytes, agranulocytes and granulocytes, but the phagocytic index was significantly higher in hyalinocytes. Extensive hemocyte aggregates ('islets') occupy most renal hemocoelic spaces and hyalinocyte-like cells are the most frequent component in them. Presumptive glycogen deposits were observed in most hyalinocytes in renal islets (they also occur in the circulation but less frequently) and may mean that hyalinocytes participate in the storage and circulation of this compound. Injection of microorganisms in the foot results in phagocytosis by hemocytes in the islets, and the different phagosomes formed are similar to those in circulating hyalinocytes. Dispersed hemocytes were obtained after kidney collagenase digestion and cell sorting, and they were able to phagocytize fluorescent beads. A role for the kidney as an immune barrier is proposed for this snail.


Subject(s)
Hemocytes/immunology , Kidney/cytology , Phagocytosis , Snails/immunology , Animals , Escherichia coli/physiology , Flow Cytometry , Fluorescent Dyes/metabolism , Hemocytes/ultrastructure , Kidney/metabolism , Kidney/ultrastructure
3.
Autophagy ; 9(7): 1080-93, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23697944

ABSTRACT

Autophagy is a cell process that in normal conditions serves to recycle cytoplasmic components and aged or damaged organelles. The autophagic pathway has been implicated in many physiological and pathological situations, even during the course of infection by intracellular pathogens. Many compounds are currently used to positively or negatively modulate the autophagic response. Recently it was demonstrated that the polyamine spermidine is a physiological inducer of autophagy in eukaryotic cells. We have previously shown that the etiological agent of Chagas disease, the protozoan parasite Trypanosoma cruzi, interacts with autophagic compartments during host cell invasion and that preactivation of autophagy significantly increases host cell colonization by this parasite. In the present report we have analyzed the effect of polyamine depletion on the autophagic response of the host cell and on T. cruzi infectivity. Our data showed that depleting intracellular polyamines by inhibiting the biosynthetic enzyme ornithine decarboxylase with difluoromethylornithine (DFMO) suppressed the induction of autophagy in response to starvation or rapamycin treatment in two cell lines. This effect was associated with a decrease in the levels of LC3 and ATG5, two proteins required for autophagosome formation. As a consequence of inhibiting host cell autophagy, DFMO impaired T. cruzi colonization, indicating that polyamines and autophagy facilitate parasite infection. Thus, our results point to DFMO as a novel autophagy inhibitor. While other autophagy inhibitors such as wortmannin and 3-methyladenine are nonspecific and potentially toxic, DFMO is an FDA-approved drug that may have value in limiting autophagy and the spread of the infection in Chagas disease and possibly other pathological settings.


Subject(s)
Autophagy/drug effects , Polyamines/pharmacology , Trypanosoma cruzi/pathogenicity , Animals , Autophagy-Related Protein 5 , CHO Cells , Cricetinae , Cricetulus , Eflornithine/pharmacology , Embryo, Mammalian/cytology , Epithelial Cells/cytology , Epithelial Cells/drug effects , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/parasitology , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/parasitology , Phagosomes/drug effects , Phagosomes/metabolism , Spermidine/pharmacology , Time Factors , Trypanosoma cruzi/drug effects
4.
Fish Shellfish Immunol ; 34(2): 443-53, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23246811

ABSTRACT

A hemocyte primary culture system for Pomacea canaliculata in a medium mimicking hemolymphatic plasma composition was developed. Hemocytes adhered and spread onto culture dish in the first few hours after seeding but later began forming aggregates. Time-lapse video microscopy showed the dynamics of the early aggregation, with cells both entering and leaving the aggregates. During this period phagocytosis occurs and was quantified. Later (>4 h), hemocytes formed large spheroidal aggregates that increased in size and also merged with adjacent spheroids (24-96 h). Large single spheroids and spheroid aggregates detach from the bottom surface and float freely in the medium. Correlative confocal, transmission electron and phase contrast microscopy showed a peculiar organization of the spheroids, with a compact core, an intermediate zone with large extracellular lacunae and an outer zone of flattened cells; also, numerous round cells emitting cytoplasmic extensions were seen attaching to the spheroids' smooth surface. Dual DAPI/propidium iodide staining revealed the coexistence of viable and non-viable cells within aggregates, in varying proportions. DNA concentration increased during the first 24 h of culture and stabilized afterward. BrdU incorporation also indicated proliferation. Spontaneous spheroid formation in culture bears interesting parallels with spheroidal hemocyte aggregates found in vivo in P. canaliculata, and also with spheroids formed by tumoral or non-tumoral mammalian cells in vitro.


Subject(s)
Cell Aggregation/physiology , Gastropoda/cytology , Hemocytes/physiology , Spheroids, Cellular/physiology , Animals , Bromodeoxyuridine , Cell Adhesion/physiology , Cells, Cultured , DNA/metabolism , Indoles , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Phase-Contrast , Microscopy, Video , Phagocytosis/physiology , Spheroids, Cellular/ultrastructure , Time-Lapse Imaging
5.
Article in English | MEDLINE | ID: mdl-21182978

ABSTRACT

The physiological ability to estivate is relevant for the maintenance of population size in the invasive Pomacea canaliculata. However, tissue reoxygenation during arousal from estivation poses the problem of acute oxidative stress. Uric acid is a potent antioxidant in several systems and it is stored in specialized tissues of P. canaliculata. Changes in tissue concentration of thiobarbituric acid reactive substances (TBARS), uric acid and allantoin were measured during estivation and arousal in P. canaliculata. Both TBARS and uric acid increased two-fold during 45 days estivation, probably as a consequence of concomitant oxyradical production during uric acid synthesis by xanthine oxidase. However, after arousal was induced, uric acid and TBARS dropped to or near baseline levels within 20 min and remained low up to 24h after arousal induction, while the urate oxidation product allantoin continuously rose to a maximum at 24h after induction, indicating the participation of uric acid as an antioxidant during reoxygenation. Neither uric acid nor allantoin was detected in the excreta during this 24h period. Urate oxidase activity was also found in organs of active snails, but activity shut down during estivation and only a partial and sustained recovery was observed in the midgut gland.


Subject(s)
Antioxidants/metabolism , Estivation , Snails/metabolism , Uric Acid/metabolism , Allantoin/metabolism , Animals , Behavior, Animal , Female , Lipid Peroxidation , Male , Snails/enzymology , Snails/physiology , Urate Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...