Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Conserv Biol ; 36(3): e13866, 2022 06.
Article in English | MEDLINE | ID: mdl-34811801

ABSTRACT

Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.


Grupos de Atributos como Entidades de Manejo en una Pesquería de Arrecife Compleja y Multiespecie Resumen Los estresantes localizados agravan la continua declinación de los arrecifes de coral causada por el clima, lo que requiere que los administradores de recursos naturales trabajen con paradigmas en constante cambio. El manejo adaptativo basado en caracteres (TBAM, en inglés) es un marco de trabajo nuevo que ayuda a enfrentar las condiciones cambiantes mediante la selección e implementación de acciones de manejo específicas para grupos de especies que comparten atributos, vulnerabilidades y respuestas al manejo esenciales. En el TBAM, el mantenimiento de los ecosistemas funcionales está balanceado con el suministro para la subsistencia humana. Identificamos mediante un agrupamiento jerárquico los grupos basados en atributos de peces para la alimentación en un arrecife de coral del Pacífico. Al plantear que los grupos basados en atributos que desempeñan funciones comparables responden similarmente a los estresantes y las acciones de manejo, determinamos los impulsores biofísicos y socioeconómicos de la biomasa de un grupo de atributos y evaluamos sus vulnerabilidades mediante modelos aditivos generalizados. Identificamos siete grupos de atributos a partir de 131 especies. Los grupos respondieron a diferentes impulsores y desplegaron vulnerabilidades divergentes; las actividades humanas aparecieron como predictores importantes de la estructuración de la comunidad. La biomasa de las especies solitarias asociadas al arrecife incrementó con la distancia desde puertos importantes de pesca y los piscívoros solitarios de gran tamaño exhibieron una declinación en la biomasa junto con la distancia desde un puerto. La biomasa de los grupos también varió en respuesta a los diferentes tipos de hábitat, la presencia o ausencia reportada de actividad pesquera con dinamita y la exposición a la energía del oleaje. Las vulnerabilidades diferenciales de los grupos de atributos revelaron cómo la estructura de la comunidad de peces para la alimentación está impulsada por aspectos diferentes del uso de recursos y del hábitat. Esta variabilidad inherente en las respuestas de los grupos basados en atributos presenta la oportunidad de aplicar estrategias selectivas de manejo basado en atributos en las pesquerías complejas y multiespecie. Este enfoque puede ajustarse abiertamente para adaptarse a los contextos y las prioridades locales.


Subject(s)
Ecosystem , Fisheries , Animals , Biomass , Conservation of Natural Resources , Coral Reefs , Fishes
2.
Ecol Appl ; 31(7): e02409, 2021 10.
Article in English | MEDLINE | ID: mdl-34255400

ABSTRACT

Harvesting models are based upon the ideology that removing large, old individuals provides space for young, fast-growing counterparts that can maximize (fisheries) yields while maintaining population stability and ecosystem function. Yet, this compensatory density dependent response has rarely been examined in multispecies systems. We combined extensive data sets from coral-reef fisheries across a suite of Pacific islands and provided unique context to the universal assumptions of compensatory density dependence. We reported that size-and-age truncation only existed for 49% of target coral-reef fishes exposed to growing fishing pressure across a suite of Pacific islands. In contrast, most of the remaining species slowly disappeared from landings and reefs with limited change to their size structure (i.e., little to no compensation), often becoming replaced by smaller-bodied sister species. To understand these remarkable and disparate differences, we constructed phylogenies for dominant fish families and discovered that large patristic distances between sister species, or greater phylogenetic isolation, predicted size-and-age truncation. Isolated species appeared to have greater niche dominance or breadth, supported by their faster growth rates compared to species with similar sizes and within similar guilds, and many also have group foraging behavior. In contrast, closely related species may have more restricted, realized niches that led to their disappearance and replacement. We conclude that phylogenetic attributes offered novel guidance to proactively manage multispecies fisheries and improve our understanding of ecological niches and ecosystem stability.


Subject(s)
Anthozoa , Fisheries , Animals , Conservation of Natural Resources , Coral Reefs , Ecosystem , Fishes , Phylogeny
3.
PLoS One ; 13(5): e0198068, 2018.
Article in English | MEDLINE | ID: mdl-29852023

ABSTRACT

The consistent supply of fresh fish to commercial markets may mask growing fishing footprints and localized depletions, as fishing expands to deeper/further reefs, smaller fish, and more resilient species. To test this hypothesis, species-based records and fisher interviews were gathered over one year within a large, demand-driven coral-reef fishery in Chuuk, Micronesia. We first assessed catch statistics with respect to high windspeeds and moon phases that are known to constrain both catch and effort. While lower daily catch success was predicted by higher windspeeds and greater lunar illumination, total daily landings fluctuated less than fishing success across environmental gradients. Instead, daily landings were mainly driven by the number of flights from Chuuk to Guam (i.e., international demand). Given that demand masked local drivers of overall catch volume, we further evaluated species-based indicators of fisheries exploitation. Most target species (75%) had either a positively skewed size distribution or proportional contributions that were dependent upon favorable conditions (i.e. season and moon phases). Skewed size distributions indicated truncated growth associated with fishing mortality, and in turn, suggested that size-based management policies may be most effective for these species. In contrast, environmentally-constrained catch success indicated species that may be more susceptible to growing fishing footprints and may respond better to gear/quota/area policies compared to size policies. Species-based responses offered a simplified means to combine species into fisheries management units. Finally, a comparison of commercial and subsistence landings showed higher vulnerability to fishing among species preferentially targeted by commercial fisheries, offering new insights into how commercial harvesting can disproportionately impact resources, despite having lower annual catch volumes.


Subject(s)
Coral Reefs , Environment , Fisheries/statistics & numerical data , Conservation of Natural Resources , Humans , Micronesia , Population Dynamics , Seasons
4.
Sci Rep ; 8(1): 5725, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29636494

ABSTRACT

Variable density dependence within multispecies fisheries results in species restructuring as exploitation intensifies that is poorly understood. We examined unique species-based records across 25 years of exploitation to evaluate patterns, consequences, and predictions of species replacements within three coral-reef fisheries. Body-size was an expected determinant of species replacements, as larger fishes were consistently replaced by smaller, faster-growing counterparts. However, many species with similar sizes and growth rates responded differently. Naso unicornis, a primary component of coral-reef fisheries across the Pacific, was one of the most resilient species to exploitation despite having a similar maximum size and growth as many large parrotfishes that slowly disappeared from landings. Assessments conducted for all primary target species revealed clear distinctions in compensatory responses: 31% had diminishing size structures, 18% had diminishing proportional contribution, but only 5% showed both. Standard approaches to fisheries management assume constant rates of size-and-age restructuring and rely upon metrics such as fishing-versus-natural mortality. Instead, a deeper appreciation for varying recruitment rates may help to (re)define fisheries management units and reduce complexity in multispecies fisheries. We last consider our results alongside traditional knowledge and management in the Pacific that clearly appreciated species responses, but have been lost over the years.


Subject(s)
Coral Reefs , Fisheries , Population Density , Pacific Ocean , Population Dynamics , Spatio-Temporal Analysis
5.
PLoS One ; 11(11): e0166319, 2016.
Article in English | MEDLINE | ID: mdl-27902715

ABSTRACT

Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.


Subject(s)
Anthozoa/growth & development , Biomass , Climate Change , Conservation of Natural Resources , Coral Reefs , Environmental Pollution , Animals , Geography
SELECTION OF CITATIONS
SEARCH DETAIL
...