Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 409(23): 5026-33, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21908015

ABSTRACT

Small-scale gold mining in Portovelo-Zaruma, Southern Equador, performed by mercury amalgamation and cyanidation, yields 9-10 t of gold/annum, resulting in annual releases of around 0.65 t of inorganic mercury and 6000 t of sodium cyanide in the local river system. The release of sediments, cyanide, mercury, and other metals present in the ore such as lead, manganese and arsenic significantly reduces biodiversity downstream the processing plants and enriches metals in bottom sediments and biota. However, methylmercury concentrations in sediments downstream the mining area were recently found to be one order of magnitude lower than upstream or in small tributaries. In this study we investigated cyanide, bacterial activity in water and sediment and mercury methylation potentials in sediments along the Puyango river watershed, measured respectively by in-situ spectrophotometry and incubation with (3)H-leucine and (203)Hg(2+). Free cyanide was undetectable (<1 µg·L(-1)) upstream mining activities, reached 280 µg·L(-1) a few km downstream the processing plants area and was still detectable about 100 km downstream. At stations with detectable free cyanide in unfiltered water, 50% of it was dissolved and 50% associated to suspended particles. Bacterial activity and mercury methylation in sediment showed a similar spatial pattern, inverse to the one found for free cyanide in water, i.e. with significant values in pristine upstream sampling points (respectively 6.4 to 22 µgC·mg wet weight(-1)·h(-1) and 1.2 to 19% of total (203) Hg·gdry weight(-1)·day(-1)) and undetectable downstream the processing plants, returning to upstream values only in the most distant downstream stations. The data suggest that free cyanide oxidation was slower than would be expected from the high water turbulence, resulting in a long-range inhibition of bacterial activity and hence mercury methylation. The important mercury fluxes resultant from mining activities raise concerns about its biomethylation in coastal areas where many mangrove areas have been converted to shrimp farming.


Subject(s)
Bacteria/drug effects , Cyanides/analysis , Geologic Sediments/chemistry , Methylmercury Compounds/analysis , Mining , Rivers/chemistry , Water Pollutants, Chemical/chemistry , Bacteria/metabolism , Cyanides/chemistry , Cyanides/toxicity , Ecuador , Gold , Mercury/chemistry , Metals, Heavy/analysis , Methylation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...