Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Biotechnol ; 13(5): 1304-1308, 2020 09.
Article in English | MEDLINE | ID: mdl-32567248

ABSTRACT

The issue of standardization in synthetic biology is a recurring one. As a discipline that incorporates engineering principles into biological designs, synthetic biology needs effective ways to communicate results and allow different researchers (both academic and industrial) to build upon previous results and improve on existing designs. An aspect that is left out of the discussions, especially when they happen at the level of academic and industrial consortia or policymaking, is whether or not standards are applicable or even useful in everyday research practice. In this caucus article, we examine this particular issue with the hope of including it in the standardization discussions agenda and provide insights into a topic that synthetic biology researchers experience daily.


Subject(s)
Synthetic Biology , Reference Standards
2.
Microb Biotechnol ; 10(5): 1212-1215, 2017 09.
Article in English | MEDLINE | ID: mdl-28771979

ABSTRACT

Nanoparticles (NPs), particles having one or more dimensions below 100 nm, are currently being synthesized through chemical and physical methods on an industrial scale. However, these methods for the synthesis of NPs do not fit with sustainable development goals. NP synthesis, through chemical and physical methods, requires high temperatures and/or pressures resulting in high energy consumption and the generation of large amounts of waste. In recent years, research into the synthesis of NPs has shifted to more green and biological methods, often using microorganisms. A biological approach has many advantages over chemical and physical methods. Reactions are catalysed in aqueous solutions at standard temperature and pressure (cost effective and low energy syntheses). This method does not require solvents or harmful chemicals, making NP biosynthesis a greener and more eco-friendly method. Furthermore, NP synthesis by microbes does not require the use of pure starting materials; thus it can simultaneously be used for the bioremediation of contaminated water, land and waste, and the biosynthesis of NPs. Therefore the biosynthesis of NPs contributes to the sustainable development goals, while the alternative physical and chemical methods exclusively utilize scarce and expensive resources for NP synthesis.


Subject(s)
Bacteria/metabolism , Nanoparticles/metabolism , Bacteria/chemistry , Conservation of Natural Resources , Green Chemistry Technology , Industrial Microbiology , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...