Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 3318, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558635

ABSTRACT

Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/virology , Camelids, New World/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Immunization , Male , Neutralization Tests , Peptide Library , Protein Binding/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Transfection
2.
J Alzheimers Dis ; 42(1): 301-12, 2014.
Article in English | MEDLINE | ID: mdl-24858404

ABSTRACT

Currently, it is unclear whether a neuron that undergoes viral reactivation and produces infectious particles survives and resumes latency or is killed, which is intriguing even if still unanswered. Previous reports have shown that herpes simplex virus type 1 (HSV-1) inhibits apoptosis during early infection, but is pro-apoptotic during productive infection. Taking in consideration that the stress sensors AMPK and Sirt1 are involved in neuronal survival and neuroprotection, we hypothesized that HSV-1 could activate the AMPK/Sirt1 axis as a strategy to establish latency through inhibition of apoptosis and restoration of the energy status. These effects could be accomplished through deacetylation of pro-apoptotic protein p53 and regulation of the master regulator of mitochondrial biogenesis and function PGC-1α and its target gene TFAM. Accordingly, we evaluated the AMPK/Sirt1 axis and its targets p53, PGC-1α, and acetyl CoA carboxylase in mice neuronal cultures infected with HSV-1 by western blot, RT-qPCR, and immunofluorescence analyses. Herein, we show that HSV-1 differentially modulates the AMPK/Sirt1 axis during the course of infection. In fact, during early infection (2 hpi) activated AMPK (p-AMPK) was down-regulated, but thereafter recovered gradually. In contrast, the levels of acetylated-p53 increased during the first hours post infection, but afterwards were reduced in parallel with the activation of Sirt1. However, acetylated-p53 peaked again at 18 hpi during productive infection, suggesting an activation of apoptosis. Strikingly, acetylated-p53, Sirt1, and p-AMPK apparently translocate from the nucleus to the cytoplasm after 4 hpi, where they accumulate in discrete foci in the perinuclear region. These results suggest that HSV-1 modulates the AMPK/Sirt1 axis differentially during the course of infection interfering with pro-apoptotic signaling and regulating mitochondrial biogenesis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Herpes Simplex/metabolism , Herpesvirus 1, Human , Neurons/immunology , Sirtuin 1/metabolism , Animals , Blotting, Western , Cell Nucleus/metabolism , Cells, Cultured , Cytoplasm/metabolism , Disease Progression , Mice , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction , Signal Transduction , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...