Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31152, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38784542

ABSTRACT

Image segmentation is a computer vision technique that involves dividing an image into distinct and meaningful regions or segments. The objective was to partition the image into areas that share similar visual characteristics. Noise and undesirable artifacts introduce inconsistencies and irregularities in image data. These inconsistencies severely affect the ability of most segmentation algorithms to distinguish between true image features, leading to less reliable and lower-quality results. Cellular Automata (CA) is a computational concept that consists of a grid of cells, each of which can be in a finite number of states. These cells evolve over discrete time steps based on a set of predefined rules that dictate how a cell's state changes according to its own state and the states of its neighboring cells. In this paper, a new segmentation approach based on the CA model was introduced. The proposed approach consisted of three phases. In the initial two phases of the process, the primary objective was to eliminate noise and undesirable artifacts that can interfere with the identification of regions exhibiting similar visual characteristics. To achieve this, a set of rules is designed to modify the state value of each cell or pixel based on the states of its neighboring elements. In the third phase, each element is assigned a state that is chosen from a set of predefined states. These states directly represent the final segmentation values for the corresponding elements. The proposed method was evaluated using different images, considering important quality indices. The experimental results indicated that the proposed approach produces better-segmented images in terms of quality and robustness.

2.
PLoS One ; 19(5): e0303670, 2024.
Article in English | MEDLINE | ID: mdl-38820462

ABSTRACT

Breast cancer remains a critical global concern, underscoring the urgent need for early detection and accurate diagnosis to improve survival rates among women. Recent developments in deep learning have shown promising potential for computer-aided detection (CAD) systems to address this challenge. In this study, a novel segmentation method based on deep learning is designed to detect tumors in breast ultrasound images. Our proposed approach combines two powerful attention mechanisms: the novel Positional Convolutional Block Attention Module (PCBAM) and Shifted Window Attention (SWA), integrated into a Residual U-Net model. The PCBAM enhances the Convolutional Block Attention Module (CBAM) by incorporating the Positional Attention Module (PAM), thereby improving the contextual information captured by CBAM and enhancing the model's ability to capture spatial relationships within local features. Additionally, we employ SWA within the bottleneck layer of the Residual U-Net to further enhance the model's performance. To evaluate our approach, we perform experiments using two widely used datasets of breast ultrasound images and the obtained results demonstrate its capability in accurately detecting tumors. Our approach achieves state-of-the-art performance with dice score of 74.23% and 78.58% on BUSI and UDIAT datasets, respectively in segmenting the breast tumor region, showcasing its potential to help with precise tumor detection. By leveraging the power of deep learning and integrating innovative attention mechanisms, our study contributes to the ongoing efforts to improve breast cancer detection and ultimately enhance women's survival rates. The source code of our work can be found here: https://github.com/AyushRoy2001/DAUNet.


Subject(s)
Breast Neoplasms , Deep Learning , Ultrasonography, Mammary , Humans , Breast Neoplasms/diagnostic imaging , Female , Ultrasonography, Mammary/methods , Neural Networks, Computer , Algorithms , Image Interpretation, Computer-Assisted/methods , Breast/diagnostic imaging , Breast/pathology , Image Processing, Computer-Assisted/methods
3.
Vaccines (Basel) ; 12(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38250894

ABSTRACT

Since late 2019, most efforts to control the COVID-19 pandemic have focused on developing vaccines. By mid-2020, some vaccines fulfilled international regulations for their application. However, these vaccines have shown a decline in effectiveness several weeks after the last dose, highlighting the need to optimize vaccine administration due to supply chain limitations. While methods exist to prioritize population groups for vaccination, there is a lack of research on how to optimally define the time between doses when two-dose vaccines are administrated to such groups. Under such conditions, modeling the real effect of each vaccine on the population is critical. Even though several efforts have been made to characterize vaccine effectiveness profiles, none of these initiatives enable characterization of the individual effect of each dose. Thus, this paper presents a novel methodology for estimating the vaccine effectiveness profile. It addresses the vaccine characterization problem by considering a deconvolution of relevant data profiles, treating them as an optimization process. The results of this approach enabled the independent estimation of the effectiveness profiles for the first and second vaccine doses and their use to find sweet spots for designing efficient vaccination strategies. Our methodology can enable a more effective and efficient contemporary response against the COVID-19 pandemic, as well as for any other disease in the future.

4.
Appl Math Model ; 121: 506-523, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37234701

ABSTRACT

A new contagious disease or unidentified COVID-19 variants could provoke a new collapse in the global economy. Under such conditions, companies, factories, and organizations must adopt reopening policies that allow their operations to reduce economic effects. Effective reopening policies should be designed using mathematical models that emulate infection chains through individual interactions. In contrast to other modeling approaches, agent-based schemes represent a computational paradigm used to characterize the person-to-person interactions of individuals inside a system, providing accurate simulation results. To evaluate the optimal conditions for a reopening policy, authorities and decision-makers need to conduct an extensive number of simulations manually, with a high possibility of losing information and important details. For this reason, the integration of optimization and simulation of reopening policies could automatically find the realistic scenario under which the lowest risk of infection was attained. In this paper, the metaheuristic technique of the Whale Optimization Algorithm is used to find the solution with the minimal transmission risk produced by an agent-based model that emulates a hypothetical re-opening context. Our scheme finds the optimal results of different generical activation scenarios. The experimental results indicate that our approach delivers practical knowledge and essential estimations for identifying optimal re-opening strategies with the lowest transmission risk.

5.
Comput Biol Med ; 150: 106155, 2022 11.
Article in English | MEDLINE | ID: mdl-36240595

ABSTRACT

Histopathological image classification has become one of the most challenging tasks among researchers due to the fine-grained variability of the disease. However, the rapid development of deep learning-based models such as the Convolutional Neural Network (CNN) has propelled much attentiveness to the classification of complex biomedical images. In this work, we propose a novel end-to-end deep learning model, named Multi-scale Dual Residual Recurrent Network (MTRRE-Net), for breast cancer classification from histopathological images. This model introduces a contrasting approach of dual residual block combined with the recurrent network to overcome the vanishing gradient problem even if the network is significantly deep. The proposed model has been evaluated on a publicly available standard dataset, namely BreaKHis, and achieved impressive accuracy in overcoming state-of-the-art models on all the images considered at various magnification levels.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Neural Networks, Computer , Breast/pathology
6.
Comput Biol Med ; 148: 105847, 2022 09.
Article in English | MEDLINE | ID: mdl-35932728

ABSTRACT

The global pandemic caused by the coronavirus (COVID-19) disease has collapsed the worldwide economy. Elements such as non-obligatory vaccination, new strain variants and lack of discipline to follow social distancing measures suggest the possibility that COVID-19 may continue to exist, exhibiting the behavior of a seasonal disease. As the socio-economic crisis has become unsustainable, all countries are planning strategies to gradually restart their economic and social activities. Initially, several containment measures have been adopted involving social distancing, infection detection tests, and ventilation systems. Despite the implementation of such policies, there exists a lack of evaluation of their performance to reduce the contagion index. This means there are no appropriate indicators to decide which intervention or set of interventions present the most effective result. Under these conditions, the development of models that provide useful information in the design and evaluation of containment measures and re-opening policies is of prime concern. In this paper, a novel approach to model the transmission process of COVID-19 in closed environments is proposed. The proposed model can simulate the effects that result from the complex interaction among individuals when they follow a particular containment measure or re-opening policy. With the proposed model, different hypothetical re-opening policies, that are otherwise impossible to analyze in real conditions, can be tested. Computer experiments demonstrate that the proposed model provides suitable information and realistic predictions, which are appropriate for designing strategies that allow a safe return to economic activities.


Subject(s)
COVID-19 , Humans , Pandemics , Policy , SARS-CoV-2
7.
Comput Biol Med ; 144: 105349, 2022 05.
Article in English | MEDLINE | ID: mdl-35303580

ABSTRACT

The data-driven modern era has enabled the collection of large amounts of biomedical and clinical data. DNA microarray gene expression datasets have mainly gained significant attention to the research community owing to their ability to identify diseases through the "bio-markers" or specific alterations in the gene sequence that represent that particular disease (for example, different types of cancer). However, gene expression datasets are very high-dimensional, while only a few of those are "bio-markers". Meta-heuristic-based feature selection effectively filters out only the relevant genes from a large set of attributes efficiently to reduce data storage and computation requirements. To this end, in this paper, we propose an Altruistic Whale Optimization Algorithm (AltWOA) for the feature selection problem in high-dimensional microarray data. AltWOA is an improvement on the basic Whale Optimization Algorithm. We embed the concept of altruism in the whale population to help efficient propagation of candidate solutions that can reach the global optima over the iterations. Evaluation of the proposed method on eight high dimensional microarray datasets reveals the superiority of AltWOA compared to popular and classical techniques in the literature on the same datasets both in terms of accuracy and the final number of features selected. The relevant codes for the proposed approach are available publicly at https://github.com/Rohit-Kundu/AltWOA.


Subject(s)
Neoplasms , Whales , Algorithms , Altruism , Animals , Gene Expression Profiling , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Whales/genetics
8.
Expert Syst Appl ; 193: 116377, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35002099

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It may cause serious ailments in infected individuals and complications may lead to death. X-rays and Computed Tomography (CT) scans can be used for the diagnosis of the disease. In this context, various methods have been proposed for the detection of COVID-19 from radiological images. In this work, we propose an end-to-end framework consisting of deep feature extraction followed by feature selection (FS) for the detection of COVID-19 from CT scan images. For feature extraction, we utilize three deep learning based Convolutional Neural Networks (CNNs). For FS, we use a meta-heuristic optimization algorithm, Harmony Search (HS), combined with a local search method, Adaptive ß -Hill Climbing (A ß HC) for better performance. We evaluate the proposed approach on the SARS-COV-2 CT-Scan Dataset consisting of 2482 CT scan images and an updated version of the previous dataset containing 2926 CT scan images. For comparison, we use a few state-of-the-art optimization algorithms. The best accuracy scores obtained by the present approach are 97.30% and 98.87% respectively on the said datasets, which are better than many of the algorithms used for comparison. The performances are also at par with some recent works which use the same datasets. The codes for the FS algorithms are available at: https://github.com/khalid0007/Metaheuristic-Algorithms.

9.
Appl Soft Comput ; 111: 107698, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34276262

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It may cause severe ailments in infected individuals. The more severe cases may lead to death. Automated methods which can detect COVID-19 in radiological images can help in the screening of patients. In this work, a two-stage pipeline composed of feature extraction followed by feature selection (FS) for the detection of COVID-19 from CT scan images is proposed. For feature extraction, a state-of-the-art Convolutional Neural Network (CNN) model based on the DenseNet architecture is utilised. To eliminate the non-informative and redundant features, the meta-heuristic called Harris Hawks optimisation (HHO) algorithm combined with Simulated Annealing (SA) and Chaotic initialisation is employed. The proposed approach is evaluated on the SARS-COV-2 CT-Scan dataset which consists of 2482 CT-scans. Without the Chaotic initialisation and the SA, the method gives an accuracy of around 98.42% which further increases to 98.85% on the inclusion of the two and thus delivers better performance than many state-of-the-art methods and various meta-heuristic based FS algorithms. Also, comparison has been drawn with many hybrid variants of meta-heuristic algorithms. Although HHO falls behind a few of the hybrid variants, when Chaotic initialisation and SA are incorporated into it, the proposed algorithm performs better than any other algorithm with which comparison has been drawn. The proposed algorithm decreases the number of features selected by around 75% , which is better than most of the other algorithms.

10.
Multimed Tools Appl ; 80(8): 12435-12468, 2021.
Article in English | MEDLINE | ID: mdl-33456315

ABSTRACT

Multilevel thresholding image segmentation has received considerable attention in several image processing applications. However, the process of determining the optimal threshold values (as the preprocessing step) is time-consuming when traditional methods are used. Although these limitations can be addressed by applying metaheuristic methods, such approaches may be idle with a local solution. This study proposed an alternative multilevel thresholding image segmentation method called VPLWOA, which is an improved version of the volleyball premier league (VPL) algorithm using the whale optimization algorithm (WOA). In VPLWOA, the WOA is used as a local search system to improve the learning phase of the VPL algorithm. A set of experimental series is performed using two different image datasets to assess the performance of the VPLWOA in determining the values that may be optimal threshold, and the performance of this algorithm is compared with other approaches. Experimental results show that the proposed VPLWOA outperforms the other approaches in terms of several performance measures, such as signal-to-noise ratio and structural similarity index.

11.
Comput Biol Med ; 121: 103827, 2020 06.
Article in English | MEDLINE | ID: mdl-32568667

ABSTRACT

The rapid spread of the coronavirus disease (COVID-19) has become a global threat affecting almost all countries in the world. As countries reach the infection peak, it is planned to return to a new normal under different coexistence conditions in order to reduce the economic effects produced by the total or partial closure of companies, universities, shops, etc. Under such circumstances, the use of mathematical models to evaluate the transmission risk of COVID-19 in various facilities represents an important tool in assisting authorities to make informed decisions. On the other hand, agent-based modeling is a relatively new approach to model complex systems composed of agents whose behavior is described using simple rules. Different from classical mathematical models (which consider a homogenous population), agent-based approaches model individuals with distinct characteristics and provide more realistic results. In this paper, an agent-based model to evaluate the COVID-19 transmission risks in facilities is presented. The proposed scheme has been designed to simulate the spatiotemporal transmission process. In the model, simulated agents make decisions depending on the programmed rules. Such rules correspond to spatial patterns and infection conditions under which agents interact to characterize the transmission process. The model also includes an individual profile for each agent, which defines its main social characteristics and health conditions used during its interactions. In general, this profile partially determines the behavior of the agent during its interactions with other individuals. Several hypothetical scenarios have been considered to show the performance of the proposed model. Experimental results have demonstrated that the simulations provide useful information to produce strategies for reducing the transmission risks of COVID-19 within the facilities.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Systems Analysis , COVID-19 , Computational Biology , Computer Simulation , Coronavirus Infections/epidemiology , Disease Susceptibility/epidemiology , Health Behavior , Health Facilities , Humans , Models, Biological , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Population Dynamics/statistics & numerical data , SARS-CoV-2
12.
Biosystems ; 174: 1-21, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30261229

ABSTRACT

Several species of fish live in groups to increase their foraging efficiency and reproduction rates. Such groups are considered self-organized since they can adopt different cooperative actions without the presence of an apparent leader. One of their most interesting collaborative behaviors found in fish is the hunting strategy presented by the Yellow Saddle Goatfish (Parupeneus cyclostomus). In this strategy, the complete group of fish is distributed in subpopulations to cover the whole hunting region. In each sub-population, all fish participate collectively in the hunt considering two different roles: chaser and blocker. In the hunt, a chaser fish actively tries to find the prey in a certain area whereas a blocker fish moves spatially to avoid the escape of the prey. In this paper, we develop the hunting model of Yellow Saddle Goatfish, which at some abstraction level can be characterized as a search strategy for optimization proposes. In the approach, different computational operators are designed in order to emulate this peculiar hunting behavior. With the use of this biological model, the new search strategy improves the optimization results in terms of accuracy and convergence in comparison to other popular optimization techniques. The performance of this method is tested by analyzing its results with other related evolutionary computation techniques. Several standard benchmark functions commonly used in the literature were considered to obtain optimization results. Furthermore, the proposed model is applied to solve certain engineering optimization problems. Analysis of the experimental results exhibits the efficiency, accuracy, and robustness of the proposed algorithm.


Subject(s)
Algorithms , Models, Biological , Perciformes/physiology , Social Behavior , Animals , Perciformes/classification , Predatory Behavior
13.
Biosystems ; 160: 39-55, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28847742

ABSTRACT

In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems.


Subject(s)
Algorithms , Mass Behavior , Predatory Behavior , Animals , Biological Evolution , Crows/physiology , Insecta/physiology
14.
Comput Intell Neurosci ; 2016: 3629174, 2016.
Article in English | MEDLINE | ID: mdl-26839532

ABSTRACT

In several machine vision problems, a relevant issue is the estimation of homographies between two different perspectives that hold an extensive set of abnormal data. A method to find such estimation is the random sampling consensus (RANSAC); in this, the goal is to maximize the number of matching points given a permissible error (Pe), according to a candidate model. However, those objectives are in conflict: a low Pe value increases the accuracy of the model but degrades its generalization ability that refers to the number of matching points that tolerate noisy data, whereas a high Pe value improves the noise tolerance of the model but adversely drives the process to false detections. This work considers the estimation process as a multiobjective optimization problem that seeks to maximize the number of matching points whereas Pe is simultaneously minimized. In order to solve the multiobjective formulation, two different evolutionary algorithms have been explored: the Nondominated Sorting Genetic Algorithm II (NSGA-II) and the Nondominated Sorting Differential Evolution (NSDE). Results considering acknowledged quality measures among original and transformed images over a well-known image benchmark show superior performance of the proposal than Random Sample Consensus algorithm.


Subject(s)
Algorithms , Artificial Intelligence , Decision Support Techniques , Models, Theoretical , Pattern Recognition, Automated/methods , Computer Simulation , Humans
15.
Comput Intell Neurosci ; 2015: 434263, 2015.
Article in English | MEDLINE | ID: mdl-26339228

ABSTRACT

In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC) algorithm and the evolutionary method harmony search (HS). With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , Signal Processing, Computer-Assisted , Information Storage and Retrieval
16.
ScientificWorldJournal ; 2014: 497514, 2014.
Article in English | MEDLINE | ID: mdl-25147850

ABSTRACT

Interest in multimodal optimization is expanding rapidly, since many practical engineering problems demand the localization of multiple optima within a search space. On the other hand, the cuckoo search (CS) algorithm is a simple and effective global optimization algorithm which can not be directly applied to solve multimodal optimization problems. This paper proposes a new multimodal optimization algorithm called the multimodal cuckoo search (MCS). Under MCS, the original CS is enhanced with multimodal capacities by means of (1) the incorporation of a memory mechanism to efficiently register potential local optima according to their fitness value and the distance to other potential solutions, (2) the modification of the original CS individual selection strategy to accelerate the detection process of new local minima, and (3) the inclusion of a depuration procedure to cyclically eliminate duplicated memory elements. The performance of the proposed approach is compared to several state-of-the-art multimodal optimization algorithms considering a benchmark suite of fourteen multimodal problems. Experimental results indicate that the proposed strategy is capable of providing better and even a more consistent performance over existing well-known multimodal algorithms for the majority of test problems yet avoiding any serious computational deterioration.


Subject(s)
Algorithms , Models, Theoretical
17.
Comput Math Methods Med ; 2013: 137392, 2013.
Article in English | MEDLINE | ID: mdl-23762178

ABSTRACT

The automatic detection of white blood cells (WBCs) still remains as an unsolved issue in medical imaging. The analysis of WBC images has engaged researchers from fields of medicine and computer vision alike. Since WBC can be approximated by an ellipsoid form, an ellipse detector algorithm may be successfully applied in order to recognize such elements. This paper presents an algorithm for the automatic detection of WBC embedded in complicated and cluttered smear images that considers the complete process as a multiellipse detection problem. The approach, which is based on the differential evolution (DE) algorithm, transforms the detection task into an optimization problem whose individuals represent candidate ellipses. An objective function evaluates if such candidate ellipses are actually present in the edge map of the smear image. Guided by the values of such function, the set of encoded candidate ellipses (individuals) are evolved using the DE algorithm so that they can fit into the WBCs which are enclosed within the edge map of the smear image. Experimental results from white blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique in terms of its accuracy and robustness.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Leukocytes/cytology , Automation , Cell Shape , Computational Biology , Computer Simulation , Hematologic Tests/statistics & numerical data , Humans , Pattern Recognition, Automated/statistics & numerical data
18.
Comput Math Methods Med ; 2013: 395071, 2013.
Article in English | MEDLINE | ID: mdl-23476713

ABSTRACT

Medical imaging is a relevant field of application of image processing algorithms. In particular, the analysis of white blood cell (WBC) images has engaged researchers from fields of medicine and computer vision alike. Since WBCs can be approximated by a quasicircular form, a circular detector algorithm may be successfully applied. This paper presents an algorithm for the automatic detection of white blood cells embedded into complicated and cluttered smear images that considers the complete process as a circle detection problem. The approach is based on a nature-inspired technique called the electromagnetism-like optimization (EMO) algorithm which is a heuristic method that follows electromagnetism principles for solving complex optimization problems. The proposed approach uses an objective function which measures the resemblance of a candidate circle to an actual WBC. Guided by the values of such objective function, the set of encoded candidate circles are evolved by using EMO, so that they can fit into the actual blood cells contained in the edge map of the image. Experimental results from blood cell images with a varying range of complexity are included to validate the efficiency of the proposed technique regarding detection, robustness, and stability.


Subject(s)
Leukocyte Count/methods , Leukocytes/cytology , Algorithms , Artificial Intelligence , Diagnostic Imaging/methods , Electromagnetic Phenomena , Electromagnetic Radiation , Humans , Image Processing, Computer-Assisted/methods , Models, Statistical , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...