Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 67(5): 550-561, 2022 11.
Article in English | MEDLINE | ID: mdl-35944139

ABSTRACT

G protein-coupled receptors (GPCRs) not only are turned on or off to control canonical G protein signaling but also may be fine-tuned to promote qualitative/biased signaling. Qualitative signaling by M3 muscarinic acetylcholine receptors (mAChRs) has been proposed, but its impact on physiologic systems remains unclear, and currently no biased M3 mAChR ligands have been described. Herein, we identify PD 102807 as a biased M3 ligand and delineate its signaling and function in human airway smooth muscle (ASM) cells. PD 102807 induced M3-mediated ß-arrestin recruitment but not calcium mobilization. PD 102807 inhibited methacholine (MCh)-induced calcium mobilization in (M3-expressing) ASM cells. PD 102807 induced phosphorylation of AMP-activated protein kinase (AMPK) and the downstream effector acetyl-coenzyme A carboxylase (ACC). PD 102807- induced phosphorylated (p)-AMPK levels were greatly reduced in ASM cells with minimal M3 expression and were not inhibited by the Gq inhibitor YM-254890. Induction of p-AMPK and p-ACC was inhibited by ß-arrestin 1 or GRK2/3 knockdown. Similarly, MCh induced phosphorylation of AMPK/ACC, but these effects were Gq dependent and unaffected by GRK2/3 knockdown. Consistent with the known ability of AMPK to inhibit transforming growth factor ß (TGF-ß)-mediated functions, PD 102807 inhibited TGF-ß-induced SMAD-Luc activity, sm-α-actin expression, actin stress fiber formation, and ASM cell hypercontractility. These findings reveal that PD 102807 is a biased M3 ligand that inhibits M3-transduced Gq signaling but promotes Gq protein-independent, GRK-/arrestin-dependent, M3-mediated AMPK signaling, which in turn regulates ASM phenotype and contractile function. Consequently, biased M3 ligands hold significant promise as therapeutic agents capable of exploiting the pleiotropic nature of M3 signaling.


Subject(s)
AMP-Activated Protein Kinases , Arrestin , Humans , Arrestin/genetics , Arrestin/metabolism , Arrestin/pharmacology , Ligands , AMP-Activated Protein Kinases/metabolism , Myocytes, Smooth Muscle/metabolism , beta-Arrestin 1/metabolism , Actins/metabolism , Transforming Growth Factor beta/metabolism
2.
Aging (Albany NY) ; 13(13): 16922-16937, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238764

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is an age-related disorder that carries a universally poor prognosis and is thought to arise from repetitive micro injuries to the alveolar epithelium. To date, a major factor limiting our understanding of IPF is a deficiency of disease models, particularly in vitro models that can recapitulate the full complement of molecular attributes in the human condition. In this study, we aimed to develop a model that more closely resembles the aberrant IPF lung epithelium. By exposing mouse alveolar epithelial cells to repeated, low doses of bleomycin, instead of usual one-time exposures, we uncovered changes strikingly similar to those in the IPF lung epithelium. This included the acquisition of multiple phenotypic and functional characteristics of senescent cells and the adoption of previously described changes in mitochondrial homeostasis, including alterations in redox balance, energy production and activity of the mitochondrial unfolded protein response. We also uncovered dramatic changes in cellular metabolism and detected a profound loss of proteostasis, as characterized by the accumulation of cytoplasmic protein aggregates, dysregulated expression of chaperone proteins and decreased activity of the ubiquitin proteasome system. In summary, we describe an in vitro model that closely resembles the aberrant lung epithelium in IPF. We propose that this simple yet powerful tool could help uncover new biological mechanisms and assist in developing new pharmacological tools to treat the disease.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Lung/growth & development , Lung/pathology , Respiratory Mucosa/growth & development , Respiratory Mucosa/pathology , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Cell Line , Cellular Senescence , Disease Models, Animal , Energy Metabolism , Homeostasis , Humans , Mice , Mitochondria/metabolism , Oxidation-Reduction , Proteasome Endopeptidase Complex , Proteins/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Unfolded Protein Response
3.
Respir Res ; 22(1): 49, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557836

ABSTRACT

BACKGROUND: Mitochondrial dysfunction has emerged as an important player in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a common cause of idiopathic interstitial lung disease in adults. Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder that causes a similar type of pulmonary fibrosis in younger adults, although the role of mitochondrial dysfunction in this condition is not understood. METHODS: We performed a detailed characterization of mitochondrial structure and function in lung tissues and alveolar epithelial cells deficient in the adaptor protein complex 3 beta 1 (Ap3b1) subunit, the gene responsible for causing subtype 2 of HPS (HPS-2). RESULTS: We observed widespread changes in mitochondrial homeostasis in HPS-2 cells, including the acquisition of abnormally shaped mitochondria, with reduced number of cristae, and markedly reduced activity of the electron transport chain and the tricarboxylic acid cycle. We also found that mitochondrial redox imbalance and activity of the mitochondrial unfolded protein response were dysregulated in HPS-2 cells and this associated with various other changes that appeared to be compensatory to mitochondrial dysfunction. This included an increase in glycolytic activity, an upregulation in the expression of mitochondrial biogenesis factors and enhanced activation of the energy-conserving enzyme AMP-activated protein kinase. CONCLUSION: In summary, our findings indicate that mitochondrial function is dramatically altered in HPS-2 lung tissues, suggesting dysfunction of this organelle might be a driver of HPS lung disease.


Subject(s)
Adaptor Protein Complex 3/genetics , Adaptor Protein Complex beta Subunits/genetics , Homeostasis/physiology , Lung/physiopathology , Mitochondria/physiology , Pulmonary Alveoli/physiopathology , Respiratory Mucosa/physiopathology , Animals , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/pathology , Hermanski-Pudlak Syndrome/physiopathology , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Alveoli/pathology , Respiratory Mucosa/pathology
4.
Int J Mol Sci ; 21(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963720

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is age-related interstitial lung disease of unknown etiology. About 100,000 people in the U.S have IPF, with a 3-year median life expectancy post-diagnosis. The development of an effective treatment for pulmonary fibrosis will require an improved understanding of its molecular pathogenesis and the "normal" and "pathological' hallmarks of the aging lung. An important characteristic of the aging organism is its lowered capacity to adapt quickly to, and counteract, disturbances. While it is likely that DNA damage, chronic endoplasmic reticulum (ER) stress, and accumulation of heat shock proteins are capable of initiating tissue repair, recent studies point to a pathogenic role for mitochondrial dysfunction in the development of pulmonary fibrosis. These studies suggest that damage to the mitochondria induces fibrotic remodeling through a variety of mechanisms including the activation of apoptotic and inflammatory pathways. Mitochondrial quality control (MQC) has been demonstrated to play an important role in the maintenance of mitochondrial homeostasis. Different factors can induce MQC, including mitochondrial DNA damage, proteostasis dysfunction, and mitochondrial protein translational inhibition. MQC constitutes a complex signaling response that affects mitochondrial biogenesis, mitophagy, fusion/fission and the mitochondrial unfolded protein response (UPRmt) that, together, can produce new mitochondria, degrade the components of the oxidative complex or clearance the entire organelle. In pulmonary fibrosis, defects in mitophagy and mitochondrial biogenesis have been implicated in both cellular apoptosis and senescence during tissue repair. MQC has also been found to have a role in the regulation of other protein activity, inflammatory mediators, latent growth factors, and anti-fibrotic growth factors. In this review, we delineated the role of MQC in the pathogenesis of age-related pulmonary fibrosis.


Subject(s)
Gene Regulatory Networks , Idiopathic Pulmonary Fibrosis/metabolism , Mitochondria/metabolism , Endoplasmic Reticulum Stress , Humans , Mitophagy , Oxidative Stress , Reactive Oxygen Species/metabolism , Unfolded Protein Response
5.
Orphanet J Rare Dis ; 14(1): 162, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31272455

ABSTRACT

BACKGROUND: Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by oculocutaneous albinism and platelet dysfunction and can sometimes lead to a highly aggressive form of pulmonary fibrosis that mimics the fatal lung condition called idiopathic pulmonary fibrosis (IPF). Although the activities of various matrix metalloproteinases (MMPs) are known to be dysregulated in IPF, it remains to be determined whether similar changes in these enzymes can be detected in HPS. RESULTS: Here, we show that transcript and protein levels as well as enzymatic activities of MMP-2 and -9 are markedly increased in the lungs of mice carrying the HPS Ap3b1 gene mutation. Moreover, immunohistochemical staining localized this increase in MMP expression to the distal pulmonary epithelium, and shRNA knockdown of the Ap3b1 gene in cultured lung epithelial cells resulted in a similar upregulation in MMP-2 and -9 expression. Mechanistically, we found that upregulation in MMP expression associated with increased activity of the serine/threonine kinase Akt, and pharmacological inhibition of this enzyme resulted in a dramatic suppression of MMP expression in Ap3b1 deficient lung epithelial cells. Similarly, levels and activity of different MMPs were also found to be increased in the lungs of mice carrying the Bloc3 HPS gene mutation and in the bronchoalveolar lavage fluid of subjects with HPS. However, an association between MMP activity and disease severity was not detected in these individuals. CONCLUSIONS: In summary, our findings indicate that MMP activity is dysregulated in the HPS lung, suggesting a role for these proteases as biological markers or pathogenic players in HPS lung disease.


Subject(s)
Hermanski-Pudlak Syndrome/metabolism , Lung/metabolism , Matrix Metalloproteinases/metabolism , Animals , Blotting, Western , Cell Line , Hermanski-Pudlak Syndrome/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinases/genetics , Mice
6.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1049-L1060, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30892080

ABSTRACT

Cellular senescence is a biological process by which cells lose their capacity to proliferate yet remain metabolically active. Although originally considered a protective mechanism to limit the formation of cancer, it is now appreciated that cellular senescence also contributes to the development of disease, including common respiratory ailments such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. While many factors have been linked to the development of cellular senescence, mitochondrial dysfunction has emerged as an important causative factor. In this study, we uncovered that the mitochondrial biogenesis pathway driven by the mammalian target of rapamycin/peroxisome proliferator-activated receptor-γ complex 1α/ß (mTOR/PGC-1α/ß) axis is markedly upregulated in senescent lung epithelial cells. Using two different models, we show that activation of this pathway is associated with other features characteristic of enhanced mitochondrial biogenesis, including elevated number of mitochondrion per cell, increased oxidative phosphorylation, and augmented mitochondrial reactive oxygen species (ROS) production. Furthermore, we found that pharmacological inhibition of the mTORC1 complex with rapamycin not only restored mitochondrial homeostasis but also reduced cellular senescence to bleomycin in lung epithelial cells. Likewise, mitochondrial-specific antioxidant therapy also effectively inhibited mTORC1 activation in these cells while concomitantly reducing mitochondrial biogenesis and cellular senescence. In summary, this study provides a mechanistic link between mitochondrial biogenesis and cellular senescence in lung epithelium and suggests that strategies aimed at blocking the mTORC1/PGC-1α/ß axis or reducing ROS-induced molecular damage could be effective in the treatment of senescence-associated lung diseases.


Subject(s)
Cellular Senescence/physiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Respiratory Mucosa/metabolism , Animals , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Bleomycin/pharmacology , Cell Line , Idiopathic Pulmonary Fibrosis/pathology , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Oxidative Stress/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Rats , Reactive Oxygen Species/metabolism , Respiratory Mucosa/cytology , Sirolimus/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...