Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35457503

ABSTRACT

Exposure to atmospheric particulate matter and nitrogen dioxide has been linked to SARS-CoV-2 infection and death. We hypothesized that long-term exposure to farming-related air pollutants might predispose to an increased risk of COVID-19-related death. To test this hypothesis, we performed an ecological study of five Italian Regions (Piedmont, Lombardy, Veneto, Emilia-Romagna and Sicily), linking all-cause mortality by province (administrative entities within regions) to data on atmospheric concentrations of particulate matter (PM2.5 and PM10) and ammonia (NH3), which are mainly produced by agricultural activities. The study outcome was change in all-cause mortality during March-April 2020 compared with March-April 2015-2019 (period). We estimated all-cause mortality rate ratios (MRRs) by multivariate negative binomial regression models adjusting for air temperature, humidity, international import-export, gross domestic product and population density. We documented a 6.9% excess in MRR (proxy for COVID-19 mortality) for each tonne/km2 increase in NH3 emissions, explained by the interaction of the period variable with NH3 exposure, considering all pollutants together. Despite the limitations of the ecological design of the study, following the precautionary principle, we recommend the implementation of public health measures to limit environmental NH3 exposure, particularly while the COVID-19 pandemic continues. Future studies are needed to investigate any causal link between COVID-19 and farming-related pollution.


Subject(s)
Agriculture , Air Pollutants , Air Pollution , COVID-19 , Particulate Matter , Agriculture/statistics & numerical data , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/statistics & numerical data , COVID-19/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Epidemiologic Studies , Humans , Italy/epidemiology , Pandemics , Particulate Matter/adverse effects , Particulate Matter/analysis , SARS-CoV-2 , Sicily/epidemiology
2.
Article in English | MEDLINE | ID: mdl-35162850

ABSTRACT

Studies investigating the association between urinary Polycyclic Aromatic Hydrocarbons (PAHs) and asthma in children provided inhomogeneous results. We aimed to use Mediation Analysis to discover whether a link between urinary PAHs and lung function exists and if it might be ascribed to a direct or a symptom-mediated (indirect) effect in children with asthma. This single-center prospective study was conducted in Palermo, Italy, between March and July 2017 and involved 50 children with persistent mild-moderate asthma, aged 6-11 years. At each time visit (day 0, 30, 60, and 90), physical examination, spirometry, and urine collection for detection of urinary cotinine and PAHs were performed. A symptom score was computed. The sum of individually calculated molar mass of nine PAH metabolites (ΣPAH), naphthalene metabolites (ΣPAHn) and phenanthrene metabolites (ΣPAHp) were calculated. Three children withdrew from the study due to technical problems (n = 1) and adverse events (n = 2). PAHs indirect effects on FEV1 (ΣPAH: -0.011, p = 0.04; ΣPAHn: -0.011, p = 0.04; ΣPAHp: -0.012, p < 0.001) and FVC (ΣPAH: -0.012, p = 0.02; ΣPAHn: -0.0126, p = 0.02; ΣPAHp: -0.013, p < 0.001) were statistically significant. In conclusion, PAHs exposures have significant indirect (symptom-mediated) effects on lung function, emphasizing the role of PAHs-induced respiratory morbidity in decreasing lung function in children with asthma.


Subject(s)
Asthma , Polycyclic Aromatic Hydrocarbons , Asthma/chemically induced , Child , Humans , Lung , Mediation Analysis , Polycyclic Aromatic Hydrocarbons/analysis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...