Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(10): 3044-3050, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437632

ABSTRACT

Lithium (Li) metal stands as a promising anode in advancing high-energy-density batteries. However, intrinsic issues associated with metallic Li, especially the dendritic growth, have hindered its practical application. Herein, we focus on molecular combined structural design to develop dendrite-free anodes. Specifically, using hydrogen-substituted graphdiyne (HGDY) aerogel hosts, we successfully fabricated a promising Li composite anode (Li@HGDY). The HGDY aerogel's lithiophilic nature and hierarchical pores drive molten Li infusion and reduce local current density within the three-dimensional HGDY host. The unique molecular structure of HGDY provides favorable bulk pathways for lithium-ion transport. By simultaneous regulation of electron and ion transport within the HGDY host, uniform lithium stripping/platting is fulfilled. Li@HGDY symmetric cells exhibit a low overpotential and stable cycling. The Li@HGDY||lithium iron phosphate full cell retained 98.1% capacity after 170 cycles at 0.4 C. This study sheds new light on designing high-capacity and long-lasting lithium metal anodes.

2.
Ann Biomed Eng ; 50(9): 1134-1142, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35802206

ABSTRACT

Injuries to the ligaments of the knee commonly impact vulnerable and physically active individuals. These injuries can lead to the development of degenerative diseases such as post-traumatic osteoarthritis (PTOA). Non-invasive optical modalities, such as infrared and Raman spectroscopy, provide means for quantitative evaluation of knee joint tissues and have been proposed as potential quantitative diagnostic tools for arthroscopy. In this study, we evaluate Raman spectroscopy as a viable tool for estimating functional properties of collateral ligaments. Artificial trauma was induced by anterior cruciate ligament transection (ACLT) in the left or right knee joint of skeletally mature New Zealand rabbits. The corresponding contralateral (CL) samples were extracted from healthy unoperated joints along with a separate group of control (CNTRL) animals. The rabbits were sacrificed at 8 weeks after ACLT. The ligaments were then harvested and measured using Raman spectroscopy. A uniaxial tensile stress-relaxation testing protocol was adopted for determining several biomechanical properties of the samples. Partial least squares (PLS) regression models were then employed to correlate the spectral data with the biomechanical properties. Results show that the capacity of Raman spectroscopy for estimating the biomechanical properties of the ligament samples varies depending on the target property, with prediction error ranging from 15.78% for tissue cross-sectional area to 30.39% for stiffness. The hysteresis under cyclic loading at 2 Hz (RMSE = 6.22%, Normalized RMSE = 22.24%) can be accurately estimated from the Raman data which describes the viscous damping properties of the tissue. We conclude that Raman spectroscopy has the potential for non-destructively estimating ligament biomechanical properties in health and disease, thus enhancing the diagnostic value of optical arthroscopic evaluations of ligament integrity.


Subject(s)
Anterior Cruciate Ligament Injuries , Spectrum Analysis, Raman , Animals , Anterior Cruciate Ligament , Biomechanical Phenomena , Knee Joint , Rabbits
3.
Mol Cancer Ther ; 19(1): 13-25, 2020 01.
Article in English | MEDLINE | ID: mdl-31534013

ABSTRACT

AZD0156 is a potent and selective, bioavailable inhibitor of ataxia-telangiectasia mutated (ATM) protein, a signaling kinase involved in the DNA damage response. We present preclinical data demonstrating abrogation of irradiation-induced ATM signaling by low doses of AZD0156, as measured by phosphorylation of ATM substrates. AZD0156 is a strong radiosensitizer in vitro, and using a lung xenograft model, we show that systemic delivery of AZD0156 enhances the tumor growth inhibitory effects of radiation treatment in vivo Because ATM deficiency contributes to PARP inhibitor sensitivity, preclinically, we evaluated the effect of combining AZD0156 with the PARP inhibitor olaparib. Using ATM isogenic FaDu cells, we demonstrate that AZD0156 impedes the repair of olaparib-induced DNA damage, resulting in elevated DNA double-strand break signaling, cell-cycle arrest, and apoptosis. Preclinically, AZD0156 potentiated the effects of olaparib across a panel of lung, gastric, and breast cancer cell lines in vitro, and improved the efficacy of olaparib in two patient-derived triple-negative breast cancer xenograft models. AZD0156 is currently being evaluated in phase I studies (NCT02588105).


Subject(s)
Ataxia Telangiectasia Mutated Proteins/therapeutic use , Phthalazines/therapeutic use , Piperazines/therapeutic use , Pyridines/therapeutic use , Quinolines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/radiotherapy , Animals , Ataxia Telangiectasia Mutated Proteins/pharmacology , Cell Line, Tumor , Humans , Male , Mice , Mice, Nude , Phthalazines/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Quinolines/pharmacology , Radiation-Sensitizing Agents/pharmacology , Triple Negative Breast Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...