Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Genet Genomics ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670432

ABSTRACT

Polyploidization in plants often leads to increased cell size and grain size, which may be affected by the increased genome dosage and transcription abundance. The synthesized Triticum durum (AABB)-Haynaldia villosa (VV) amphiploid (AABBVV) has significantly increased grain size, especially grain length, than the tetraploid and diploid parents. To investigate how polyploidization affects grain development at the transcriptional level, we perform transcriptome analysis using the immature seeds of T. durum, H. villosa, and the amphiploid. The dosage effect genes are contributed more by differentially expressed genes from genome V of H. villosa. The dosage effect genes overrepresent grain development-related genes. Interestingly, the vernalization gene TaVRN1 is among the positive dosage effect genes in the T. durum‒H. villosa and T. turgidum‒Ae. tauschii amphiploids. The expression levels of TaVRN1 homologs are positively correlated with the grain size and weight. The TaVRN1-B1 or TaVRN1-D1 mutation shows delayed florescence, decreased cell size, grain size, and grain yield. These data indicate that dosage effect genes could be one of the important explanations for increased grain size by regulating grain development. The identification and functional validation of dosage effect genes may facilitate the finding of valuable genes for improving wheat yield.

2.
PLoS Biol ; 20(8): e3001739, 2022 08.
Article in English | MEDLINE | ID: mdl-35969610

ABSTRACT

Symbiotic nitrogen fixation (SNF) provides sufficient nitrogen (N) to meet most legume nutrition demands. In return, host plants feed symbionts carbohydrates produced in shoots. However, the molecular dialogue between shoots and symbionts remains largely mysterious. Here, we report the map-based cloning and characterization of a natural variation in GmNN1, the ortholog of Arabidopsis thaliana FLOWERING LOCUS T (FT2a) that simultaneously triggers nodulation in soybean and modulates leaf N nutrition. A 43-bp insertion in the promoter region of GmNN1/FT2a significantly decreased its transcription level and yielded N deficiency phenotypes. Manipulating GmNN1/GmFT2a significantly enhanced soybean nodulation, plant growth, and N nutrition. The near-isogenic lines (NILs) carrying low mRNA abundance alleles of GmNN1/FT2a, along with stable transgenic soybeans with CRISPR/Cas9 knockouts of GmNN1/FT2a, had yellower leaves, lower N concentrations, and fewer nodules than wild-type control plants. Grafting together with split-root experiments demonstrated that only shoot GmNN1/FT2a was responsible for regulating nodulation and thereby N nutrition through shoot-to-root translocation, and this process depends on rhizobial infection. After translocating into roots, shoot-derived GmNN1/FT2a was found to interact with GmNFYA-C (nuclear factor-Y subunit A-C) to activate symbiotic signaling through the previously reported GmNFYA-C-ENOD40 module. In short, the description of the critical soybean nodulation regulatory pathway outlined herein sheds novel insights into the shoot-to-root signaling required for communications between host plants and root nodulating symbionts.


Subject(s)
Arabidopsis , Glycine max , Arabidopsis/genetics , Arabidopsis/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Plant Roots/genetics , Plant Roots/metabolism , Glycine max/genetics , Glycine max/metabolism , Symbiosis/genetics
3.
J Integr Plant Biol ; 63(6): 1021-1035, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33491865

ABSTRACT

Root-associated microbes are critical for plant growth and nutrient acquisition. However, scant information exists on optimizing communities of beneficial root-associated microbes or the mechanisms underlying their interactions with host plants. In this report, we demonstrate that root-associated microbes are critical influencers of host plant growth and nutrient acquisition. Three synthetic communities (SynComs) were constructed based on functional screening of 1,893 microbial strains isolated from root-associated compartments of soybean plants. Functional assemblage of SynComs promoted significant plant growth and nutrient acquisition under both N/P nutrient deficiency and sufficiency conditions. Field trials further revealed that application of SynComs stably and significantly promoted plant growth, facilitated N and P acquisition, and subsequently increased soybean yield. Among the tested communities, SynCom1 exhibited the greatest promotion effect, with yield increases of up to 36.1% observed in two field sites. Further RNA-seq implied that SynCom application systemically regulates N and P signaling networks at the transcriptional level, which leads to increased representation of important growth pathways, especially those related to auxin responses. Overall, this study details a promising strategy for constructing SynComs based on functional screening, which are capable of enhancing nutrient acquisition and crop yield through the activities of beneficial root-associated microbes.


Subject(s)
Glycine max/metabolism , Plant Roots/metabolism , Microbial Consortia/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Plant Roots/physiology , RNA-Seq , Glycine max/physiology
4.
Appl Microbiol Biotechnol ; 103(8): 3367-3379, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30888465

ABSTRACT

Many recent studies have shown that flagellin fused to heterologous antigens can induce significantly enhanced humoral and cellular immune responses through its adjuvant activity. Therefore, in this study, two key B cell epitopes and a truncated VP1 (ΔVP1) protein from foot-and-mouth disease virus (FMDV) were expressed as flagellin fusion proteins in different patterns. Specifically, ΔVP1 and two duplicates of two key B cell epitopes (2×B1B2) were fused separately to the C-terminus of flagellin with a universal exogenous T cell epitope to construct FT (Flagellin-Truncated VP1) and FME (Flagellin-Multiple Epitopes). In addition, the D3 domain of flagellin was replaced by ΔVP1 in FME, yielding FTME (Flagellin-Truncated VP1-Multiple Epitopes). The immunogenicity and protective efficacy of the three fusion proteins as novel FMDV vaccine candidates were evaluated. The results showed that FT, FME, and FTME elicited significant FMDV-specific IgG responses at 10 µg/dose compared with the mock group (P < 0.05), with FTME producing the highest response. No significant differences in the antibody response to FTME were observed between different immunization routes or among adjuvants (ISA-206, poly(I·C), MPLA, and CpG-ODN) in mice. In addition, at 30 µg/dose, all three fusion proteins significantly induced neutralizing antibody production and upregulated the levels of some cytokines, including TNF-α, IFN-γ, and IL-12, in guinea pigs. Importantly, all three fusion proteins provided effective protective immunity against FMDV challenge in guinea pigs, though different protection rates were found. The results presented in this study indicate that the FTME fusion protein is a promising novel vaccine candidate for the future prevention and control of foot-and-mouth disease.


Subject(s)
Flagellin/immunology , Foot-and-Mouth Disease Virus/immunology , Foot-and-Mouth Disease/prevention & control , Vaccination/methods , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Cytokines/blood , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Flagellin/genetics , Foot-and-Mouth Disease Virus/genetics , Guinea Pigs , Male , Mice, Inbred BALB C , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics
5.
Virus Res ; 259: 18-27, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30342075

ABSTRACT

Since October 2010, severe porcine epidemic diarrhea (PED) outbreaks caused by highly virulent PED virus (PEDV) strains have occurred continuously in the Chinese pig population and caused considerable economic losses. Although PEDV vaccines based on classical PEDV strains have been widely used in China in recent years, the morbidity and mortality in piglets remain high. Therefore, virulent genotype GII PEDV strains that are prevalent in the field should be isolated and used to develop next-generation vaccines. In the present study, a Chinese virulent genotype GIIb PEDV strain, CH/HNPJ/2017, was serially propagated in Vero cells for up to 90 passages. The S genes contained typical insertions and deletions that were also found in other recently isolated highly virulent PEDV strains from China and other countries and had two neighboring unique insertion mutations, which resulted in four amino acid changes in the S1 region of passages P10 and P60. Pig infection studies revealed that the CH/HNPJ/2017 strain was highly virulent in piglets, and the median pig diarrhea dose (PDD50) was 7.68 log10PDD50/3 mL. Furthermore, the cell-adapted CH/HNPJ/2017 strain elicited potent serum IgG and neutralizing antibody responses in immunized pigs when it was used as an inactivated vaccine candidate. In addition, the pigs that received the experimental inactivated vaccines were partially protected (3/5) against subsequent viral challenge. In brief, these data indicate that the CH/HNPJ/2017 strain is a promising candidate for developing a safe and effective PEDV vaccine in the future.


Subject(s)
Coronavirus Infections/veterinary , Genotype , Porcine epidemic diarrhea virus/genetics , Swine Diseases/virology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Chlorocebus aethiops , Diarrhea/veterinary , Host-Pathogen Interactions/immunology , Neutralization Tests , Phylogeny , Porcine epidemic diarrhea virus/classification , Porcine epidemic diarrhea virus/immunology , Porcine epidemic diarrhea virus/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Swine , Swine Diseases/immunology , Swine Diseases/pathology , Swine Diseases/prevention & control , Vaccines, Inactivated/immunology , Vero Cells , Viral Vaccines/immunology , Virulence
6.
Expert Rev Vaccines ; 17(4): 335-349, 2018 04.
Article in English | MEDLINE | ID: mdl-29580106

ABSTRACT

INTRODUCTION: Bacterial flagellin, as a pathogen-associated molecular pattern (PAMP), can activate both innate and adaptive immunity. Its unique structural characteristics endow an effective and flexible adjuvant activity, which allow the design of different types of vaccine strategies to prevent various diseases. This review will discuss recent progress in the mechanism of action of flagellin and its prospects for use as a vaccine adjuvant. AREAS COVERED: Herein we summarize various types of information related to flagellin adjuvants from PubMed, including structures, signaling pathways, natural immunity, and extensive applications in vaccines, and it discusses the immunogenicity, safety, and efficacy of flagellin-adjuvanted vaccines in clinical trials. EXPERT COMMENTARY: It is widely accepted that as an adjuvant, flagellin can induce an enhanced antigen-specific immune response. Flagellin adjuvants will allow more effective flagellin-based vaccines to enter clinical trials. Furthermore, vaccine formulations containing PAMPs are crucial to exert the maximum potential of vaccine antigens. Therefore, combinations of flagellin-adjuvanted vaccines with other adjuvants that act in a synergistic manner, particularly TLR ligands, represent a promising method for tailoring targeted vaccines to meet specific requirements.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Flagellin/administration & dosage , Vaccines/administration & dosage , Adaptive Immunity/immunology , Animals , Antigens/immunology , Flagellin/immunology , Humans , Immunity, Innate/immunology , Signal Transduction/immunology , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...