Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Small ; : e2307216, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38078782

ABSTRACT

Phosphors with narrow-band green emissions and high photoluminescent quantum efficiency (PLQY) are significantly required for backlighting displays with wider color gamut. In this work, two centimeter-sized manganese (II) halide single crystals TMG2 MnCl4 and TMG2 MnBr4 (TMG = 1,1,3,3-tetramethylguanidine) are synthesized, exhibiting bright narrow-band green emissions with high PLQYs up to 62% and 90%, respectively. The narrow-band green light emission is located at 520 nm with a full-width at half-maximum (FWHM) of only 57 nm. The photoluminescence mechanisms of two single crystals are elaborated. Two white-light-emitting diodes for backlighting displays (BD-WLEDs) based on them are fabricated, exhibiting the widest color gamut of 122% National Television Standards Committee (NTSC), and a luminous efficacy reached ≈93 lm W-1 with excellent luminescence stability at high temperatures. These properties indicate the potential applications of tetrahedral manganese (II) hybrids in wide-color gamut backlighting displays.

2.
Inorg Chem ; 62(24): 9722-9731, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37285221

ABSTRACT

Organic-inorganic hybrid metal halides have attracted widespread attention due to their excellent tunability and versatility. Here, we have selected pyridinium derivatives with different substituent groups or substitution positions as the organic templating cations and obtained six 1D chain-like structures. They are divided into three types: type I (single chain), type II (double chain), and type III (triple chain), with tunable optical band gaps and emission properties. Among them, only (2,4-LD)PbBr3 (2,4-LD = 2,4-lutidine) shows an exciton-dependent emission phenomenon, ranging from strong yellow-white to weak red-white light. By comparing its photoluminescence spectrum with that of its bromate (2,4-LD)Br, it is found that the strong yellow-white emission at 534 nm mainly came from the organic component. Furthermore, through a comparison of the fluorescence spectra and lifetimes of (2,4-LD)PbBr3 and (2-MP)PbBr3 (2-MP = 2-methylpyridine) with similar structures at different temperatures, we confirm that the tunable emission of (2,4-LD)PbBr3 comes from different photoluminescent sources corresponding to organic cations and self-trapped excitons. Density functional theory calculations further reveal that (2,4-LD)PbBr3 has a stronger interaction between organic and inorganic components compared to (2-MP)PbBr3. This work highlights the importance of organic templating cations in hybrid metal halides and the new functionalities associated with them.

3.
ACS Appl Mater Interfaces ; 15(27): 32506-32514, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37382556

ABSTRACT

Low-dimensional organic-inorganic metal halides (LOMHs) recently have attracted much attention due to their tunable crystal structures and excellent photoelectric properties. The configuration and arrangement of organic cations in LOMHs have significant effect on the structure of inorganic frameworks and luminescence properties. In this work, we systematically explored the "spatial effect" and "hydrogen bonding effect" of organic cations on the structure and properties of LOMHs, by synthesizing three LOMHs including (N-AD)PbCl4, (N-AD)2Pb2Br7, and (N-AD)4Pb3I12 (N-AD: N-acetylethylenediamine, C4H10N2O). Specifically, (110)-oriented two-dimensional (N-AD)PbCl4 and (N-AD)2Pb2Br7 with manifest blue-white emissions, originating from the free excitons (FEs) and self-trapped excitons (STEs), respectively. The UV-pumped light-emitting diode (LED)-based on (N-AD)2Pb2Br7 was prepared, and the highest color rendering index (CRI) and correlated color temperature (CCT) were up to 80 and 4484 K, respectively. This proves its potential application in solid-state lighting.

4.
Front Immunol ; 13: 1013828, 2022.
Article in English | MEDLINE | ID: mdl-36569844

ABSTRACT

Introduction: This study aimed to identified the key genes and sequencing metrics for predicting prognosis and efficacy of neoadjuvant chemotherapy (nCT) in rectal cancer (RC) based on genomic DNA sequencing in samples with different origin and multi-omics association database. Methods: We collected 16 RC patients and obtained DNA sequencing data from cancer tissues and plasma cell-free DNA before and after nCT. Various gene variations were analyzed, including single nucleotide variants (SNV), copy number variation (CNV), tumor mutation burden (TMB), copy number instability (CNI) and mutant-allele tumor heterogeneity (MATH). We also identified genes by which CNV level can differentiate the response to nCT. The Cancer Genome Atlas database and the Clinical Proteomic Tumor Analysis Consortium database were used to further evaluate the specific role of therapeutic relevant genes and screen out the key genes in multi-omics levels. After the intersection of the screened genes from differential expression analysis, survival analysis and principal components analysis dimensionality reduction cluster analysis, the key genes were finally identified. Results: The genes CNV level of principal component genes in baseline blood and cancer tissues could significantly distinguish the two groups of patients. The CNV of HSP90AA1, EGFR, SRC, MTOR, etc. were relatively gained in the better group compared with the poor group in baseline blood. The CNI and TMB was significantly different between the two groups. The increased expression of HSP90AA1, EGFR, and SRC was associated with increased sensitivity to multiple chemotherapeutic drugs. The nCT predictive score obtained by therapeutic relevant genes could be a potential prognostic indicator, and the combination with TMB could further refine prognostic prediction for patients. After a series of analysis in multi-omics association database, EGFR and HSP90AA1 with significant differences in multiple aspects were identified as the key predictive genes related to prognosis and the sensitivity of nCT. Discussion: This work revealed that effective combined application and analysis in multi-omics data are critical to search for predictive biomarkers. The key genes EGFR and HSP90AA1 could serve as an effective biomarker to predict prognose and neoadjuvant chemosensitivity.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Multiomics , DNA Copy Number Variations , Proteomics , Prognosis , Biomarkers, Tumor/genetics , Rectal Neoplasms/drug therapy , Rectal Neoplasms/genetics , ErbB Receptors/genetics
5.
Inorg Chem ; 61(39): 15475-15483, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36112537

ABSTRACT

White-light emissive organic-inorganic hybrid metal halides (MHs) have shown promising potential applications in solid-state lighting. As one-dimensional (1D) MHs for white-light emission remain rare and the key role of halogen regulation in 1D hybrid MHs for broadband emission (BE) has not been well established yet, herein, we report a family of 1D hybrid MHs TMGPbX3 (TMG = 1,1,3,3-tetramethylguanidine, X = Cl-, Br-, or I-) to systematically explore the influence of halogen on crystal structures and photoluminescence (PL) properties in 1D organic-inorganic hybrid MHs. Under ultraviolet excitation, TMGPbBr3 and TMGPbI3 exhibit BE originating from self-trapped excitons (STEs), while TMGPbCl3 manifests the special blue-white dual emission, which is contributed by STEs in inorganic frameworks and free excitons (FEs) in the organic component. Different emission mechanisms of three 1D MHs are well demonstrated and compared. With a PL quantum yield (PLQY) up to 11.67%, a white light-emitting diode (WLED) based on TMGPbCl3 was fabricated to show its valuable application in solid-state lighting.

6.
Front Immunol ; 13: 855849, 2022.
Article in English | MEDLINE | ID: mdl-35444656

ABSTRACT

Background: This study aimed to establish a novel quantification system of ferroptosis patterns and comprehensively analyze the relationship between ferroptosis score (FS) and the immune cell infiltration (ICI) characterization, tumor mutation burden (TMB), prognosis, and therapeutic sensitivity in left-sided and right-sided colon cancers (LCCs and RCCs, respectively). Methods: We comprehensively evaluated the ferroptosis patterns in 444 LCCs and RCCs based on 59 ferroptosis-related genes (FRGs). The FS was constructed to quantify ferroptosis patterns by using principal component analysis algorithms. Next, the prognostic value and therapeutic sensitivities were evaluated using multiple methods. Finally, we performed weighted gene co-expression network analysis (WGCNA) to identify the key FRGs. The IMvigor210 cohort, TCGA-COAD proteomics cohort, and Immunophenoscores were used to verify the predictive abilities of FS and the key FRGs. Results: Two ferroptosis clusters were determined. Ferroptosis cluster B demonstrated a high degree of congenital ICI and stromal-related signal enrichment with a poor prognosis. The prognosis, response of targeted inhibitors, and immunotherapy were significantly different between high and low FS groups (HSG and LSG, respectively). HSG was characterized by high TMB and microsatellite instability-high subtype with poor prognosis. Meanwhile, LSG was more likely to benefit from immunotherapy. ALOX5 was identified as a key FRG based on FS. Patients with high protein levels of ALOX5 had poorer prognoses. Conclusion: This work revealed that the evaluation of ferroptosis subtypes will contribute to gaining insight into the heterogeneity in LCCs and RCCs. The quantification for ferroptosis patterns played a non-negligible role in predicting ICI characterization, prognosis, and individualized immunotherapy strategies.


Subject(s)
Colonic Neoplasms , Ferroptosis , Biomarkers, Tumor/genetics , Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Ferroptosis/genetics , Humans , Immunotherapy , Prognosis
7.
Cancer Immunol Immunother ; 71(6): 1313-1330, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34657172

ABSTRACT

BACKGROUND: The left-sided and right-sided colon cancer (LCCs and RCCs, respectively) have unique molecular features and clinical heterogeneity. This study aimed to identify the characteristics of immune cell infiltration (ICI) subtypes for evaluating prognosis and therapeutic benefits. METHODS: The independent gene datasets, corresponding somatic mutation and clinical information were collected from The Cancer Genome Atlas and Gene Expression Omnibus. The ICI contents were evaluated by "ESTIMATE" and "CIBERSORT." We performed two computational algorithms to identify the ICI landscape related to prognosis and found the unique infiltration characteristics. Next, principal component analysis was conducted to construct ICI score based on three ICI patterns. We analyzed the correlation between ICI score and tumor mutation burden (TMB), and stratified patients into prognostic-related high- and low- ICI score groups (HSG and LSG, respectively). The role of ICI scores in the prediction of therapeutic benefits was investigated by "pRRophetic" and verified by Immunophenoscores (IPS) (TCIA database) and an independent immunotherapy cohort (IMvigor210). The key genes were preliminary screened by weighted gene co-expression network analysis based on ICI scores. And they were further identified at various levels, including single cell, protein and immunotherapy response. The predictive ability of ICI score for prognosis was also verified in IMvigor210 cohort. RESULTS: The ICI features with a better prognosis were marked by high plasma cells, dendritic cells and mast cells, low memory CD4+ T cells, M0 macrophages, M1 macrophages, as well as M2 macrophages. A high ICI score was characterized by an increased TMB and genomic instability related signaling pathways. The prognosis, sensitivities of targeted inhibitors and immunotherapy, IPS and expression of immune checkpoints were significantly different in HSG and LSG. The genes identified by ICI scores and various levels included CA2 and TSPAN1. CONCLUSION: The identification of ICI subtypes and ICI scores will help gain insights into the heterogeneity in LCC and RCC, and identify patients probably benefiting from treatments. ICI scores and the key genes could serve as an effective biomarker to predict prognosis and the sensitivity of immunotherapy.


Subject(s)
Colonic Neoplasms , Immunotherapy , Biomarkers, Tumor/genetics , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Humans , Prognosis , Tetraspanins
8.
Front Immunol ; 12: 763791, 2021.
Article in English | MEDLINE | ID: mdl-34880862

ABSTRACT

Ovarian cancer (OC) is a devastating malignancy with a poor prognosis. The complex tumor immune microenvironment results in only a small number of patients benefiting from immunotherapy. To explore the different factors that lead to immune invasion and determine prognosis and response to immune checkpoint inhibitors (ICIs), we established a prognostic risk scoring model (PRSM) with differential expression of immune-related genes (IRGs) to identify key prognostic IRGs. Patients were divided into high-risk and low-risk groups according to their immune and stromal scores. We used a bioinformatics method to identify four key IRGs that had differences in expression between the two groups and affected prognosis. We evaluated the sensitivity of treatment from three aspects, namely chemotherapy, targeted inhibitors (TIs), and immunotherapy, to evaluate the value of prediction models and key prognostic IRGs in the clinical treatment of OC. Univariate and multivariate Cox regression analyses revealed that these four key IRGs were independent prognostic factors of overall survival in OC patients. In the high-risk group comprising four genes, macrophage M0 cells, macrophage M2 cells, and regulatory T cells, observed to be associated with poor overall survival in our study, were higher. The high-risk group had a high immunophenoscore, indicating a better response to ICIs. Taken together, we constructed a PRSM and identified four key prognostic IRGs for predicting survival and response to ICIs. Finally, the expression of these key genes in OC was evaluated using RT-qPCR. Thus, these genes provide a novel predictive biomarker for immunotherapy and immunomodulation.


Subject(s)
Ovarian Neoplasms/immunology , Computational Biology , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Prognosis , Proportional Hazards Models
9.
Cancer Cell Int ; 21(1): 639, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34852825

ABSTRACT

BACKGROUND: Cervical cancer (CC) is the leading cause of cancer-related death in women. A limited number of studies have investigated whether immune-prognostic features can be used to predict the prognosis of CC. This study aimed to develop an improved prognostic risk scoring model (PRSM) for CC based on immune-related genes (IRGs) to predict survival and determine the key prognostic IRGs. METHODS: We downloaded the gene expression profiles and clinical data of CC patients from the TCGA and GEO databases. The ESTIMATE algorithm was used to calculate the score for both immune and stromal cells. Differentially expressed genes (DEGs) in different subpopulations were analyzed by "Limma". A weighted gene co-expression network analysis (WGCNA) was used to establish a DEG co-expression module related to the immune score. Immune-related gene pairs (IRGPs) were constructed, and univariate- and Lasso-Cox regression analyses were used to analyze prognosis and establish a PRSM. A log-rank test was used to verify the accuracy and consistency of the scoring model. Identification of the predicted key IRG was ensured by the application of functional enrichment, DisNor, protein-protein interactions (PPIs) and heatmap. Finally, we extracted the key prognostic immune-related genes from the gene expression data, validated the key genes by immunohistochemistry and analyzed the correlation between their expression and drug sensitivity. RESULTS: A new PRSM was developed based on 22 IRGPs. The prognosis of the low-risk group in the model group (P < 0.001) and validation group (P = 0.039) was significantly better than that in the high-risk group. Furthermore, M1 and M2 macrophages were highly expressed in the low-risk group. Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway were significantly enriched in the low-risk group. Three representative genes (CD80, CD28, and LCP2) were markers of CC prognosis. CD80 and CD28 may more prominent represent important indicators to improve patient prognosis. These key genes was positively correlated with drug sensitivity. Finally, we found that differences in the sensitivity to JNK inhibitors could be distinguished based on the use and risk grouping of this PRSM. CONCLUSIONS: The prognostic model based on the IRGs and key genes have potential clinical significance for predicting the prognosis of CC patients, providing a foundation for clinical prognosis judgment and individualized treatment.

10.
Front Mol Biosci ; 8: 668888, 2021.
Article in English | MEDLINE | ID: mdl-34532341

ABSTRACT

Background: The purpose of our study was to develop a prognostic risk model based on differential genomic instability-associated (DGIA) long non-coding RNAs (lncRNAs) of left-sided and right-sided colon cancers (LCCs and RCCs); therefore, the prognostic key lncRNAs could be identified. Methods: We adopted two independent gene datasets, corresponding somatic mutation and clinical information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Identification of differential DGIA lncRNAs from LCCs and RCCs was conducted with the appliance of "Limma" analysis. Then, we screened out key lncRNAs based on univariate and multivariate Cox proportional hazard regression analysis. Meanwhile, DGIA lncRNAs related prognostic model (DRPM) was established. We employed the DRPM in the model group and internal verification group from TCGA for the purpose of risk grouping and accuracy verification of DRPM. We also verified the accuracy of key lncRNAs with GEO data. Finally, the differences of immune infiltration, functional pathways, and therapeutic sensitivities were analyzed within different risk groups. Results: A total of 123 DGIA lncRNAs were screened out by differential expression analysis. We obtained six DGIA lncRNAs by the construction of DRPM, including AC004009.1, AP003555.2, BOLA3-AS1, NKILA, LINC00543, and UCA1. After the risk grouping by these DGIA lncRNAs, we found the prognosis of the high-risk group (HRG) was significantly worse than that in the low-risk group (LRG) (all p < 0.05). In all TCGA samples and model group, the expression of CD8+ T cells in HRG was lower than that in LRG (all p < 0.05). The functional analysis indicated that there was significant upregulation with regard to pathways related to both genetic instability and immunity in LRG, including cytosolic DNA sensing pathway, response to double-strand RNA, RIG-Ⅰ like receptor signaling pathway, and Toll-like receptor signaling pathway. Finally, we analyzed the difference and significance of key DGIA lncRNAs and risk groups in multiple therapeutic sensitivities. Conclusion: Through the analysis of the DGIA lncRNAs between LCCs and RCCs, we identified six key DGIA lncRNAs. They can not only predict the prognostic risk of patients but also serve as biomarkers for evaluating the differences of genetic instability, immune infiltration, and therapeutic sensitivity.

11.
Front Cell Dev Biol ; 9: 680100, 2021.
Article in English | MEDLINE | ID: mdl-34179009

ABSTRACT

Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.

12.
Adv Sci (Weinh) ; 8(15): e2004805, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34137519

ABSTRACT

Replacing methylammonium (MA+ ), formamidine (FA+ ), and/or cesium (Cs+ ) in 3D metal halide perovskites by larger organic cations have built a series of low-dimensional metal halide perovskites (LDMHPs) in which the inorganic metal halide octahedra arranging in the forms of 2D layers, 1D chains, and 0D points. These LDMHPs exhibit significantly different optoelectronic properties from 3D metal halide perovskites (MHPs) due to their unique quantum confinement effects and large exciton binding energies. In particular, LDMHPs often have excellent broadband luminescence from self-trapped excitons. Chemical composition, hydrogen bonding, and external factors (temperature and pressure etc.) determine structures and influence photoelectric properties of LDMHPs greatly, and especially it seems that there is no definite regulation to predict the structure and photoelectric properties when a random cation, metal, and halide is chosen to design a LDMHP. Therefore, this review discusses the construction strategies of the recent reported LDMHPs and their application progress in the luminescence field for a better understanding of these factors and a prospect for LDMHPs' development in the future.

13.
Front Oncol ; 11: 640196, 2021.
Article in English | MEDLINE | ID: mdl-33763372

ABSTRACT

BACKGROUND: Colon adenocarcinoma (COAD) can be divided into left-sided and right-sided COAD (LCCs and RCCs, respectively). They have unique characteristics in various biological aspects, particularly immune invasion and prognosis. The purpose of our study was to develop a prognostic risk scoring model (PRSM) based on differentially expressed immune-related genes (IRGs) between LCCs and RCCs, therefore the prognostic key IRGs could be identified. METHODS: The gene sets and clinical information of COAD patients were derived from TCGA and GEO databases. The comparison of differentially expressed genes (DEGs) of LCCs and RCCs were conducted with appliance of "Limma" analysis. The establishment about co-expression modules of DEGs related with immune score was conducted by weighted gene co-expression network analysis (WGCNA). Furthermore, we screened the module genes and completed construction of gene pairs. The analysis of the prognosis and the establishment of PRSM were performed with univariate- and lasso-Cox regression. We employed the PRSM in the model group and verification group for the purpose of risk group assignment and PRSM accuracy verification. Finally, the identification of the prognostic key IRGs was guaranteed by the adoption of functional enrichment, "DisNor" and protein-protein interaction (PPI). RESULTS: A total of 215 genes were screened out by differential expression analysis and WGCNA. A PRSM with 16 immune-related gene pairs (IRGPs) was established upon the genes pairing. Furthermore, we confirmed that the risk score was an independent factor for survival by univariate- and multivariate-Cox regression. The prognosis of high-risk group in model group (P < 0.001) and validation group (P = 0.014) was significantly worse than that in low-risk group. Treg cells (P < 0.001) and macrophage M0 (P = 0.015) were highly expressed in the high-risk group. The functional analysis indicated that there was significant up-regulation with regard of lymphocyte and cytokine related terms in low-risk group. Finally, we identified five prognostic key IRGs associated with better prognosis through PPI and prognostic analysis, including IL2RB, TRIM22, CIITA, CXCL13, and CXCR6. CONCLUSION: Through the analysis and screening of the DEGs between LCCs and RCCs, we constructed a PRSM which could predicate prognosis of LCCs and RCCs, and five prognostic key IRGs were identified as well. Therefore, the basis for identifying the benefits of immunotherapy and immunomodulatory was built.

14.
Aging (Albany NY) ; 12(1): 156-177, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31896739

ABSTRACT

A promising new strategy for cancer therapy is to target the autophagic pathway. However, comprehensive characterization of autophagy genes and their clinical relevance in cancer is still lacking. Here, we systematically characterized alterations of autophagy genes in multiple cancer lines by analyzing data from The Cancer Genome Atlas and CellMiner database. Interactions between autophagy genes and clinically actionable genes (CAGs) were identified by analyzing co-expression, protein-protein interactions (PPIs) and transcription factor (TF) data. A key subnetwork was identified that included 18 autophagy genes and 22 CAGs linked by 28 PPI pairs and 1 TF-target pair, which was EGFR targeted by RARA. Alterations in the expression of autophagy genes were associated with patient survival in multiple cancer types. RARA and EGFR were associated with worse survival in colorectal cancer patients. The regulatory role of EGFR in 5-FU resistance was validated in colon cancer cells in vivo and in vitro. EGFR contributed to 5-FU resistance in colon cancer cells through autophagy induction, and EGFR overexpression in 5-FU resistant colon cancer was regulated by RARA. The present study provides a comprehensive analysis of autophagy in different cancer cell lines and highlights the potential clinical utility of targeting autophagy genes.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Retinoic Acid Receptor alpha/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Disease Models, Animal , Dose-Response Relationship, Drug , ErbB Receptors/genetics , ErbB Receptors/metabolism , Gene Expression Profiling , Humans , Mice , Protein Binding , Xenograft Model Antitumor Assays
15.
Nat Commun ; 10(1): 5190, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729389

ABSTRACT

As one of next-generation semiconductors, hybrid halide perovskites with tailorable optoelectronic properties are promising for photovoltaics, lighting, and displaying. This tunability lies on variable crystal structures, wherein the spatial arrangement of halide octahedra is essential to determine the assembly behavior and materials properties. Herein, we report to manipulate their assembling behavior and crystal dimensionality by locally collective hydrogen bonding effects. Specifically, a unique urea-amide cation is employed to form corrugated 1D crystals by interacting with bromide atoms in lead octahedra via multiple hydrogen bonds. Further tuning the stoichiometry, cations are bonded with water molecules to create a larger spacer that isolates individual lead bromide octahedra. It leads to zero-dimension (0D) single crystals, which exhibit broadband 'warm' white emission with photoluminescence quantum efficiency 5 times higher than 1D counterpart. This work suggests a feasible strategy to modulate the connectivity of octahedra and consequent crystal dimensionality for the enhancement of their optoelectronic properties.

16.
Chem Commun (Camb) ; 55(89): 13406-13409, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31637391

ABSTRACT

A new small molecular hole-transporting material, 1,3,6,8-tetrakis[N-(p-methoxyphenyl)-N'-(9,9'-dimethyl-9H-fluoren-2-yl)-amino]pyrene (TFAP) was synthesized and applied in CH3NH3PbI3-perovskite solar cells. A best power conversion efficiency of 19.7% with a photovoltage of 1.11 V has been achieved.

17.
ACS Appl Mater Interfaces ; 10(48): 41592-41598, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30406985

ABSTRACT

By introducing six triarylamine groups to a hexaphenylbenzene (HPB) or a hexakis(2-thienyl)benzene (HTB) core, two propeller-shaped, triarylamine-rich, and low-cost hole-transporting materials (HTMs), which are termed as HPB-OMe and HTB-OMe, respectively, with considerable hole mobility, were obtained by easy synthetic routes. Solid-state planar perovskite CH3NH3PbI3 solar cells (PSCs) with two new HTMs showed high power conversion efficiencies (12.9% for HPB-OMe and 17.3% for HTB-OMe in forward scans) under standard 100 mW cm-2 AM 1.5G illumination without doping. A comparison of matched-degree of energy levels, hole-transporting ability, photovoltaic conversion efficiencies, and recombination of the two HTMs indicated that developing multi-triarylamine- and thiophene-rich molecules provides candidate and efficient dopant-free HTMs for PSCs.

18.
Clin Chim Acta ; 487: 357-362, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30296444

ABSTRACT

BACKGROUND: Many studies have demonstrated that right-sided colon cancer (RCC) has a higher mortality rate and worse prognosis than left-sided colon cancer (LCC). However, the underlying biological mechanism that can account for these differences is unclear. METHODS: In this study, plasma metabolic profiles in 147 LCC patients and 105 RCC patients were systematically analyzed by the ultra high performance liquid chromatography quadruple time-of-flight mass spectrometry (UHPLC-QTOF/MS) platform in conjunction with univariate and multivariate statistical analysis. RESULTS: Metabolic signatures revealed considerable differences between patients with RCC and LCC, and clear separations were observed between the two groups in partial least-squares discriminant analysis score plots. In total, six metabolites were identified as potential metabolite markers for tumor location in RCC compared with LCC, including upregulated trimethylamine N-oxide and indoxyl sulfate, and downregulated anserine, L-targinine, gamma-glutamyl-gamma-aminobutyraldehyde and pyridoxal 5'-phosphate. These differences highlight that significant alternations occur in the pathways of methane metabolism, arginine and proline metabolism, histidine metabolism, beta-alanine metabolism and vitamin B6 metabolism in RCC compared with LCC. CONCLUSIONS: Identified biomarkers and metabolic pathways may facilate our understanding of the different mortality rates and prognoses between RCC and LCC.


Subject(s)
Biomarkers, Tumor/metabolism , Colonic Neoplasms/metabolism , Metabolomics , Biomarkers, Tumor/blood , Chromatography, High Pressure Liquid , Colonic Neoplasms/blood , Colonic Neoplasms/diagnosis , Female , Humans , Male , Mass Spectrometry , Middle Aged , Multivariate Analysis
19.
ACS Omega ; 3(9): 10791-10797, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-31459193

ABSTRACT

The simpler the design, the better and more effective it is. Two novel conjugated triarylamine derivatives in donor-π-donor structure employing biphenyl core and pyrene core as π-bridges, which are termed as Bp-OMe and Py-OMe, have been synthesized and characterized and then applied to perovskite solar cells (PSCs) as hole-transport materials (HTMs) successfully. Using 2,2',7,7'-tetrakis(N,N-di-p-methoxy-phenylamine)-9,9'-spirobiuorene (spiro-OMeTAD) as a relative reference, Py-OMe-based PSCs showed the best power conversion efficiency (PCE) of 19.28% under AM 1.5 G illumination at 100 mW cm-2, which is comparable to that of PSCs based on spiro-OMeTAD with a best PCE of 18.57% with doping. Although Bp-OMe-based PSCs performed with relatively poor PCEs (best PCE of 15.06%) than those of Py-OMe-based PSCs, attributing to the poor planarity and hole mobility, taking the cost into consideration, Bp-OMe and Py-OMe are much more likely to be promising efficient HTMs for PSCs.

20.
Metabolomics ; 14(9): 110, 2018 08 16.
Article in English | MEDLINE | ID: mdl-30830371

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is a clinically heterogeneous disease, which necessitates a variety of treatments and leads to different outcomes. Only some CRC patients will benefit from neoadjuvant chemotherapy (NACT). OBJECTIVES: An accurate prediction of response to NACT in CRC patients would greatly facilitate optimal personalized management, which could improve their long-term survival and clinical outcomes. METHODS: In this study, plasma metabolite profiling was performed to identify potential biomarker candidates that can predict response to NACT for CRC. Metabolic profiles of plasma from non-response (n = 30) and response (n = 27) patients to NACT were studied using UHPLC-quadruple time-of-flight)/mass spectrometry analyses and statistical analysis methods. RESULTS: The concentrations of nine metabolites were significantly different when comparing response to NACT. The area under the receiver operating characteristic curve value of the potential biomarkers was up to 0.83 discriminating the non-response and response group to NACT, superior to the clinical parameters (carcinoembryonic antigen and carbohydrate antigen 199). CONCLUSION: These results show promise for larger studies that could result in more personalized treatment protocols for CRC patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Metabolomics , Biomarkers, Tumor/blood , Chromatography, High Pressure Liquid , Colorectal Neoplasms/blood , Female , Humans , Male , Mass Spectrometry , Middle Aged , Neoadjuvant Therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...