Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Nanobiotechnology ; 22(1): 229, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720321

ABSTRACT

Efficiently removing excess reactive oxygen species (ROS) generated by various factors on the ocular surface is a promising strategy for preventing the development of dry eye disease (DED). The currently available eye drops for DED treatment are palliative, short-lived and frequently administered due to the short precorneal residence time. Here, we developed nanozyme-based eye drops for DED by exploiting borate-mediated dynamic covalent complexation between n-FeZIF-8 nanozymes (n-Z(Fe)) and poly(vinyl alcohol) (PVA) to overcome these problems. The resultant formulation (PBnZ), which has dual-ROS scavenging abilities and prolonged corneal retention can effectively reduce oxidative stress, thereby providing an excellent preventive effect to alleviate DED. In vitro and in vivo experiments revealed that PBnZ could eliminate excess ROS through both its multienzyme-like activity and the ROS-scavenging activity of borate bonds. The positively charged nanozyme-based eye drops displayed a longer precorneal residence time due to physical adhesion and the dynamic borate bonds between phenyboronic acid and PVA or o-diol with mucin. The in vivo results showed that eye drops could effectively alleviate DED. These dual-function PBnZ nanozyme-based eye drops can provide insights into the development of novel treatment strategies for DED and other ROS-mediated inflammatory diseases and a rationale for the application of nanomaterials in clinical settings.


Subject(s)
Dry Eye Syndromes , Ophthalmic Solutions , Reactive Oxygen Species , Ophthalmic Solutions/chemistry , Ophthalmic Solutions/pharmacology , Dry Eye Syndromes/drug therapy , Animals , Reactive Oxygen Species/metabolism , Mice , Oxidative Stress/drug effects , Cornea/drug effects , Cornea/metabolism , Polyvinyl Alcohol/chemistry , Humans , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Borates/chemistry , Nanoparticles/chemistry , Male
2.
Inflamm Res ; 73(4): 531-539, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38498178

ABSTRACT

Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.


Subject(s)
Citric Acid Cycle , Macrophages , Citric Acid Cycle/physiology , Macrophages/metabolism
3.
Food Chem ; 447: 138904, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38447238

ABSTRACT

To enhance the gel properties of PSE (pale, soft, and exudative)-like chicken meat protein isolate (PPI), the effect of peanut, corn, soybean, and sunflower oils on the gel properties of PPI emulsion gels was investigated. Vegetable oils improved emulsion stability and gel strength and enhanced viscosity and elasticity. The gel strength of the PPI-sunflower oil emulsion gel increased by 163.30 %. The thermal denaturation temperature and enthalpy values were increased. They decreased the particle size of PPI emulsion (P < 0.05) and changed the three-dimensional network structure of PPI emulsion gels from reticular to sheet with a smooth surface and pore-reduced lamellar. They elevated the content of immobile water PPI emulsion gels, decreased the α-helix and ß-turn, and increased the ß-sheet and random coil. Vegetable oil improved the gel properties of PPI in the following order: sunflower oil > soybean oil > corn oil ≈ peanut oil > control group.


Subject(s)
Chickens , Plant Oils , Animals , Emulsions/chemistry , Meat Proteins , Sunflower Oil , Gels/chemistry , Rheology
4.
J Cell Physiol ; 238(11): 2692-2709, 2023 11.
Article in English | MEDLINE | ID: mdl-37796139

ABSTRACT

Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.


Subject(s)
Cilia , Osteoblasts , Osteogenesis , Oxidative Stress , TRPV Cation Channels , Weightlessness , Animals , Rats , Cilia/metabolism , Osteoblasts/metabolism , Reactive Oxygen Species/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Cells, Cultured , Morpholines/pharmacology , Pyrroles/pharmacology , Gravitation
5.
Eur J Med Chem ; 258: 115597, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37423126

ABSTRACT

Spleen tyrosine kinase (Syk) is an important oncogene and signal transduction mediator that is mainly expressed in hematopoietic cells. Syk plays a key role in the B cell receptor (BCR) signaling pathway. Abnormal activation of Syk is closely related to the occurrence and development of hematological malignancies. Therefore, Syk is a potential target for the treatment of various hematologic cancers. Starting from compound 6(Syk, IC50 = 15.8 µM), we performed fragment-based rational drug design for structural optimization based on the specific solvent-accessible region, hydrophobic region, and ribose region of Syk. This resulted in the discovery of a series of novel 3-(1H-benzo [d]imidazole-2-yl)-1H-pyrazol-4-amine Syk inhibitors, which led to the identification of 19q, a highly potent Syk inhibitor that exhibited excellent inhibitory activity on Syk enzyme (IC50 = 0.52 nM) and showed potency against several other kinases. In addition, compound 19q effectively reduced phosphorylation of downstream PLCγ2 level in Romos cells. And it also exhibited antiproliferative activity in multiple hematological tumour cells. More gratifyingly, 19q showed impressive efficacy at a low dosage (1 mg/kg/day) in the MV4-11 mouse xenograft model without affecting the body weight of the mice. These findings suggest that 19q is a promising new Syk inhibitor for treating blood cancers.


Subject(s)
Hematologic Neoplasms , Signal Transduction , Humans , Mice , Animals , Syk Kinase , Phosphorylation , Imidazoles/pharmacology , Imidazoles/therapeutic use , Disease Models, Animal , Amines/pharmacology , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry
6.
Int J Biol Macromol ; 244: 125159, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37268068

ABSTRACT

Persistent subconjunctival inflammation leads to subconjunctival fibrosis and eventual visual impairment. There is an unmet need for how to effectively inhibit subconjunctival inflammation. Herein, the effect of carboxymethyl chitosan (CMCS) on subconjunctival inflammation was investigated and the mechanism was involved. The evaluation of cytocompatibility demonstrated that CMCS had good biocompatibility. The in vitro results showed that CMCS inhibited secretions of pro-inflammatory cytokines (IL-6, TNF-α, IL-8 and IFN-γ) and chemokines (MCP-1), and downregulated TLR4/MyD88/NF-κB pathway in M1. The in vivo results displayed that CMCS alleviated conjunctival edema and congestion, and improved conjunctival epithelial reconstruction significantly. Both in vitro and in vivo results demonstrated that CMCS inhibited the infiltration of macrophages and reduced the expressions of iNOS, IL-6, IL-8 and TNF-α in the conjunctiva. Given that CMCS indicated the activities of inhibiting M1 polarization, NF-κB pathway, and subconjunctival inflammation, which may be employed as a potent treatment for subconjunctival inflammation.


Subject(s)
Chitosan , NF-kappa B , Humans , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Chitosan/pharmacology , Chitosan/metabolism , Interleukin-8/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Macrophages , Lipopolysaccharides/pharmacology
7.
Front Chem ; 11: 1148354, 2023.
Article in English | MEDLINE | ID: mdl-36970408

ABSTRACT

Pathogenic microbial infections have been threatening public health all over the world, which makes it highly desirable to develop an antibiotics-free material for bacterial infection. In this paper, molybdenum disulfide (MoS2) nanosheets loaded with silver nanoparticles (Ag NPs) were constructed to inactive bacteria rapidly and efficiently in a short period under a near infrared (NIR) laser (660 nm) in the presence of H2O2. The designed material presented favorable features of peroxidase-like ability and photodynamic property, which endowed it with fascinating antimicrobial capacity. Compared with free MoS2 nanosheets, the MoS2/Ag nanosheets (denoted as MoS2/Ag NSs) exhibited better antibacterial performance against Staphylococcus aureus by the generated reactive oxygen species (ROS) from both peroxidase-like catalysis and photodynamic, and the antibacterial efficiency of MoS2/Ag NSs could be further improved by increasing the amount of Ag. Results from cell culture tests proved that MoS2/Ag3 nanosheets had a negligible impact on cell growth. This work provided new insight into a promising method for eliminating bacteria without using antibiotics, and could serve as a candidate strategy for efficient disinfection to treat other bacterial infections.

8.
Biomater Sci ; 11(12): 4226-4237, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-36897607

ABSTRACT

Wound infection causes irregular tissue closure, often with prolonged healing. Traditional therapies based on antibiotic delivery have resulted in reduced therapeutic efficiency and drug resistance. Such features make it highly desirable to develop an antibiotic-free material for wound infection in clinical applications. Herein, a self-healing antibacterial hydrogel was designed to realize the treatment of S. aureus-infected wounds. The design of the dynamic imine bond endows hydrogels with self-healing and adaptive properties, which could cover the irregular wound and improve the safety of administration. In addition, benefiting from quaternized chitosan, the designed hydrogels also present fascinating antimicrobial properties and favorable biocompatibility. The evaluation in a rat skin wound infection model indicates that the fascinating antimicrobial effect accelerates wound healing by the designed hydrogels. This facile design of an antibiotic-free material allows effective wound infection management, which may be promising in coping with other complex wound healings.


Subject(s)
Chitosan , Wound Infection , Rats , Animals , Chitosan/chemistry , Hydrogels/chemistry , Staphylococcus aureus , Wound Healing , Anti-Bacterial Agents/chemistry , Wound Infection/drug therapy
9.
Nanoscale ; 14(5): 1679-1699, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35048101

ABSTRACT

The fossil-fuel shortage and severe environmental issues have posed ever-increasing demands on clean and renewable energy sources, for which the exploration of electrocatalysts has been a big challenge toward energy transfer and storage. Some indispensable features of electrocatalysts, such as large surface area, controlled structure, high porosity, and effective functionalization, have been proved to be critical for the improvement of electrocatalytic activities. Recently, the rapid expansion of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous-organic polymers has provided extensive opportunities for the development of various electrocatalysts. Moreover, combining diverse descriptions of porous-organic frameworks (such as MOFs and COFs) can generate amazing and fantastic properties, affording the formed MOF/COF (including core-shell MOF@MOF and MOF@COF and layer-on-layer MOF-on-MOF or COF-on-MOF) heterostructures wide applications in diverse fields, especially in clean energy and energy transfer. To further boosts electronic conductivity, catalytic performances, and energy storage abilities, these MOF/COF hybrid materials have been widely utilized as versatile precursors for the manufacture of transition metal catalysts embedded within mesoporous carbon nitrides (M@CNx) and porous carbon nitride frameworks (CNx) via a facile pyrolysis process. Given that these M@CNx and CNx hybrids are composed of abundant catalytic centers, rich functionalities, and large specific surface areas, vast applications in energy transfer and energy storage fields can be realized. In this mini-review, we summarize the preparation strategies of MOF/COF-based hybrids, as well as their derivatives, nanostructure formation mechanism of M@CNx and CNx hybrids from MOF/COF-based hybrid materials, and their applications as catalysts for driving diverse reactions and electrode materials for energy storage. Further, current challenges and future prospects of applying these derivatives into energy conversion and storage devices are also discussed.

10.
J Colloid Interface Sci ; 586: 538-550, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33187670

ABSTRACT

In view of the importance of multifunctional catalysts that can drive different electrocatalytic reactions in the same electrolyte solution, we designed and prepared a series of multicomponent nanohybrids composed of Co9S8 and MoS2 derived from cobalt-doped polyoxometalate (Co-POMs) by one-pot calcination method. The obtained Co9S8@MoS2 nanohybrids were composed of Co9S8, MoS2, Co-Mo-S phases and assembled nanosheets, and therefore were explored as trifunctional electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction, and methanol oxidation reaction (MOR) in an alkaline medium. The nanostructure and chemical components of the series of Co9S8@MoS2 nanohybrids can be modulated by changing the mole ratios of H5Mo12O41P to Co(NO3)2 precursor. Compared with the sole component and other reported Co9S8@MoS2 nanohybrids, the Co9S8@MoS2 nanohybrid prepared from the 1:1 ratio of PMo12 and Co(NO3)2 exhibited superior MOR catalysis efficiency (121.4 mA cm-2) and an extremely low overpotential (1.49 V) for overall water splitting at a current density of 10 mA cm-2 owning to the effective synergism among Co9S8, MoS2, and Co-Mo-S phase. Overall, this study provides a feasible approach to developing efficient and stable trifunctional bimetal electrocatalysts for clean-energy applications.

11.
Mikrochim Acta ; 187(8): 436, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32648043

ABSTRACT

The synthesis of hierarchical NiCo2O4-CoNiO2 hybrids embedded in partially reduced graphene oxide (represented by NiCo2O4/CoNiO2@pPRGO) is described. They were derived from ultrathin CoNi-based zeolitic imidazolate framework (CoNi-ZIF) nanosheets vertically grew on three-dimensional (3D) pRGO networks by pyrolysis at different temperatures (300, 600, and 900 °C) in N2 atmosphere. Transmission electron microscopy, X-ray diffraction, and X-ray photoemission spectroscopy measurements showed that the metal coordination centers (Co or Ni) were transferred into NiCo2O4 spinel and CoNiO2 nanostructures, along with a small number of metallic states of Co and Ni. In view of good electrochemical conductivity and large specific surface area of pRGO, good catalytic activity of Co- and Ni-contained NPs, and homogeneous distribution of NPs within the pRGO network, the NiCo2O4/CoNiO2@pRGO600 nanohybrid calcined at 600 °C displayed superior electrocatalytic activity toward hydrogen peroxide (H2O2) reduction. A glassy carbon electrode modified with NiCo2O4/CoNiO2@pRGO600 was used for determination of H2O2 by amperometry at an applied potential of - 0.4 V vs. Ag/AgCl. The nonenzymatic amperometric sensor exhibited high sensitivity and low detection limit (0.41 µM) within a wide working range (5 µM-3 mM and 3-12 mM) toward H2O2, as well as good selectivity, reproducibility, and long-term stability. Benefiting from the good biocompatibility and remarkable analytical performances of NiCo2O4/CoNiO2@pRGO600, the assay was used to determine real-time H2O2 released from living cancer cells. Graphical abstract.


Subject(s)
Cobalt/chemistry , Graphite/chemistry , Hydrogen Peroxide/analysis , Nanocomposites/chemistry , Nickel/chemistry , Catalysis , Cell Line, Tumor , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Humans , Limit of Detection , Oxides/chemistry , Reproducibility of Results
12.
J Colloid Interface Sci ; 578: 10-23, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32504902

ABSTRACT

As the efficient approaches for obtaining clean H2 energy, methanol oxidation (MOR) and water over slitting reactions have been increasingly essential. A series of novel semiconductive CoNi bimetal-organic framework (CoxNi3-x(HAB)2 MOF) have been prepared using hexaaminobenzene (HAB) as an organic linker. The obtained series of CoxNi3-x(HAB)2 MOFs were then explored as efficient multifunctional electrocatalysts for the non-Pt MOR and overall water splitting in alkaline medium. The basic characterizations of CoxNi3-x(HAB)2 MOFs revealed that they comprised multiple metal valence states (Co0/Co2+/Co3+ and Ni2+/Ni3+) and graphene-like nanostructures embedded with abundant CoNi alloy nanoparticles. Compared with the sole-metal MOFs (Co3(HAB)2 MOF and Ni3(HAB)2 MOF), the CoxNi3-x(HAB)2 MOF with a mass ratio of Co:Ni = 1:3 (CoxNi3-x(HAB)2 MOF-2) exhibited superior electrocatalytic performance for MOR. It gave a high current density of 92.8 mA cm-2 at 1.6 V vs. reversible hydrogen electrode (RHE) for MOR, along with the low overpotentials at the current density of 10 mV cm-2 (η10) and Tafel slopes toward hydrogen evolution reaction (η10 = 119 mV, Tafel slope = 46 mV dec-1) and oxygen evolution reaction (η10 = 1.35 V, Tafel slope = 26 mV dec-1). The analysis on the catalysis mechanism of MOR and water splitting in alkaline medium was also proposed. The voltages applied to the three- and two-electrode systems based on the bifunctional CoxNi3-x(HAB)2 MOF-2 catalyst for overall water splitting are 1.52 V vs. RHE and 1.45 V vs. silver/silver chloride (Ag/AgCl), respectively. This work provides a novel strategy for investigating the applications of promising two-dimensional semiconductive MOF as multifunctional electrocatalysts with boosted electrocatalytic activities in energy fields.

13.
Biosci Rep ; 2020 May 06.
Article in English | MEDLINE | ID: mdl-32373939

ABSTRACT

Accumulating researches have proved that long noncoding RNAs (lncRNAs) regulate a variety of cellular processes during cancer progression. However, the detailed function of most lncRNAs in colorectal cancer (CRC) remains mostly unknown. This study was aimed at exploring the specific role of lncRNA EGOT in CRC. Data from this study revealed that EGOT expression was obviously upregulated in CRC tissues and cell lines, and high EGOT expression indicated poor overall survival of CRC patients. Besides, functional assays proved that EGOT knockdown inhibited cell proliferation and promoted cell apoptosis in CRC. Then, subsequent molecular mechanism assays uncovered that EGOT could bind with miR-33b-5p and negatively regulate miR-33b-5p expression. Additionally, CROT was a downstream target of miR-33b-5p. Further, rescued-function assays suggested that the suppressive influence of EGOT depletion on CRC progression was reversed by miR-33b-5p inhibition or CROT overexpression. In conclusion, lncRNA EGOT mediates the tumor-facilitating part in CRC via miR-33b-5p/CROT pathway.

14.
J Org Chem ; 85(9): 6206-6215, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32282199

ABSTRACT

A metal-free sulfur neighboring group participation C-3 alkylation method between ß-sulfur-α-alcohol and indole is documented. Due to its considerable generality and excellent selectivity, this method has been provided a facile access to synthetically useful α-indole-ß-functions. Meanwhile, unlike traditional Friedel-Crafts and Mitsunobu reactions, the unique chemoselectivity and regioselectivity may be attributed to a synergetic mechanism with simultaneous C-O cleavage, C-S migration, and C-C formation occurring in the developed reaction.


Subject(s)
Indoles , Sulfur , Alkylation , Catalysis , Molecular Structure , Stereoisomerism
15.
ACS Appl Mater Interfaces ; 12(12): 13842-13851, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32129985

ABSTRACT

Herein, we report a novel catalyst of nickel-ruthenium alloy nanoparticles (NPs) homogeneously enriched in the wall of multiwalled carbon nanotubes (denoted as NiRu@MWCNTs) via a facile plasma reduction method. The NiRu@MWCNTs exhibits remarkable electrocatalytic activity and stability for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The required overpotentials to drive a current density of 10 mA cm-2 (η10) over NiRu@MWCNTs are only 14 and 240 mV, corresponding to Tafel slopes of 32 and 55 mV dec-1 for the HER and OER in alkaline medium, respectively. Furthermore, the NiRu@MWCNTs electrolyzer shows low η10 of 330, 380, and 280 mV in acidic, neutral, and alkaline media, respectively. Density functional theory (DFT) calculations and experimental results reveal that the NiRu alloy NPs attached to the defective and nondefective carbon are the key active sites for the HER and OER, respectively, thus resulting in superior isolated synergistic bifunctional active sites for overall water splitting. Our work provides a promising strategy for efficient synthesis of robust catalysts with specific bifunctional active sites for overall water splitting in a wide pH range, along with deep insight into the catalytic mechanism.

16.
Anal Chim Acta ; 1078: 125-134, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31358210

ABSTRACT

We synthesized three kinds of nitrogen-doped nanoporous carbon nanomaterials (represented by N-mC) through a cost-effective method, that is, pyrolysis of plant biomasses (grass, flower, and peanut shells). We further explored their potential as sensitive bioplatforms for electrochemical label-free aptasensors to facilitate the early detection of alpha-fetoprotein (AFP). Chemical structure characterizations revealed that rich functional groups coexisted in as-synthesized N-mC nanomaterials, such as C-C, C-O, C=O, C-N, and COOH. Among the three kinds of N-mC nanomaterials, the one derived from grass (N-mCg) exhibited the lowest carbon defect degree, the highest ID/IG ratio in the Raman spectra, and the largest specific surface area (186.2 m2 g-1). Consequently, N-mCg displayed excellent electrochemical activity and strong affinity toward aptamer strands, further endowing the corresponding aptasensor with sensitive detection ability for AFP. Electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) were used to investigate the whole detection procedure for AFP. The EIS and DPV results showed that the fabricated N-mCg-based aptasensor possessed an extremely low limit of detection of 60.8 and 61.8 fg·mL-1 (s/n = 3), respectively, for detecting AFP within a wide linear range from 0.1 pg mL-1 to 100 ng mL-1. Moreover, the aptasensor displayed acceptable selectivity and applicability, high reproducibility, and excellent stability in serum samples of cancer patients. Therefore, the proposed cost-effective and label-free strategy based on the nitrogen-doped nanoporous carbon derived from plant biomass is a promising approach for the early detection of various tumor markers.


Subject(s)
Biomass , Biosensing Techniques/methods , Carbon/chemistry , Electrochemical Techniques/methods , Nanostructures/chemistry , alpha-Fetoproteins/analysis , Adolescent , Adult , Aged , Aptamers, Nucleotide/chemistry , Base Sequence , Biosensing Techniques/instrumentation , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Female , Humans , Limit of Detection , Male , Middle Aged , Nitrogen/chemistry , Plants/chemistry , Porosity , Reproducibility of Results , Young Adult
17.
RSC Adv ; 9(24): 13431-13443, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-35519587

ABSTRACT

Partially- and fully-unzipped nitrogen-doped carbon nanotubes (NCNTs) were prepared by unzipping pristine NCNTs and three carbon nanostructures were applied to support Au nanoparticles (AuNPs) to form nanocomposites (Au/NCNTs, Au/PU-NCNTs, and Au/FU-NCNTs). The electrochemical behavior and the electrocatalytic activities of the nanocomposite-modified electrodes were examined. The oxygen functional groups, doped N content, and AuNP loaded concentrations are dependent on the unzipping-degree and then affect the electrochemical response and electrocatalytic performance of the electrodes. Besides, the three nanocomposites were also used for the immobilization of carcinoembryonic antigen (CEA) aptamer strands and applied for the detection of CEA. The Au/FU-NCNTs possess the optimal electrocatalytic activity and biosensing performance for the biomolecules and CEA, which is attributed to the maximum loaded AuNPs, the largest specific surface areas and the most active sites. The Au/FU-NCNT-based electrochemical aptasensor exhibits high sensitivity with a low detection limit of 6.84 pg mL-1 within a broad linear range of CEA concentration from 0.01 to 10 ng mL-1. All of these results indicate that the Au/FU-NCNTs may be a potential support for construction of aptasensors with high electrochemical effect and can be employed in the fields of biosensing or biomedical diagnosis.

18.
ACS Appl Mater Interfaces ; 10(28): 23858-23873, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29939006

ABSTRACT

Exploiting high-efficiency and low-cost bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) has been actively encouraged because of their potential applications in the field of clean energy. In this paper, we reported a novel electrocatalyst based on an exfoliated two-dimensional (2D) MXene (Ti3C2T x) loaded with bimetallic oxide alloy nanoparticles (NPs) of Pt and Pd (represented by PtO aPdO bNPs@Ti3C2T x), which was synthesized via solution plasma (SP) modification. The prepared materials were then utilized as highly efficient bifunctional electrocatalysts toward the HER and OER in alkaline solution. At a high plasma input power (200 W), bimetallic oxide alloy nanoparticles of Pt and Pd or nanoclusters with different metallic valence states were deposited onto the Ti3C2T x nanosheets. Because of the synergism of the noble-metal NPs and the Ti3C2T x nanosheets, the electrocatalytic results revealed that the as-prepared PtO aPdO bNPs@Ti3C2T x nanosheets under the plasma input power of 200 W for 3 min only required a low overpotential to attain 10 mA cm-2 for the HER (-26.5 mV) in 0.5 M H2SO4 solution and OER (1.54 V) in 0.1 M KOH solution. Moreover, water electrolysis using this catalyst achieved a water splitting current density of 10 mA cm-2 at a low cell voltage of 1.53 V in 1.0 M KOH solution. These results suggested that the hybridization of the extremely low usage of PtO a/PdO b NPs (1.07 µg cm-2) and Ti3C2T x nanosheets by SP will expand the applications of other clean energy reactions to achieve sustainable energy.

19.
Data Brief ; 17: 796-800, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29876440

ABSTRACT

In this data article, the chemical data of hollow carbon spheres and polyaniline (HCS@PANI) nanocomposite are presented for the research article entitled "Novel electrochemical biosensor based on core-shell nanostructured composite of hollow carbon spheres and polyaniline for sensitively detecting malathion" (He et al., 2018) [1]. The data includes chemical structure and components obtained by Raman spectra, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption and desorption isotherms.

20.
Bioorg Med Chem ; 21(11): 2843-55, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23628470

ABSTRACT

A series of novel 4-(2-fluorophenoxy)quinoline derivatives containing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety were designed, synthesized and evaluated for their in vitro biological activities against c-Met kinase and six typical cancer cell lines (A549, H460, HT-29, MKN-45, U87MG and SMMC-7721). All the prepared compounds showed moderate to excellent antiproliferative activity, and the analysis of their structure-activity relationships indicated that 2-chloro or 2-trifluoromethyl substituted phenyl group on the 1-position of cinnoline ring was more favorable for antitumor activity. In this study, a promising compound 33, with a c-Met IC50 value of 0.59 nM, was identified as a multitargeted receptor tyrosine kinase inhibitor.


Subject(s)
Anilides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/chemical synthesis , Anilides/chemistry , Anilides/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/chemistry , Quinolines/chemistry , Quinolines/pharmacology , Spectrometry, Fluorescence , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...