Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37102452

ABSTRACT

The rigorous quantum mechanical description of the collective interaction of many molecules with the radiation field is usually considered numerically intractable, and approximation schemes must be employed. Standard spectroscopy usually contains some levels of perturbation theory, but under strong coupling conditions, other approximations are used. A common approximation is the 1-exciton model in which processes involving weak excitations are described using a basis comprising the ground state and singly excited states of the molecule cavity-mode system. In another frequently used approximation in numerical investigations, the electromagnetic field is described classically, and the quantum molecular subsystem is treated in the mean-field Hartree approximation with its wavefunction assumed to be a product of single molecules' wavefunctions. The former disregards states that take long time to populate and is, therefore, essentially a short time approximation. The latter is not limited in this way, but by its nature, disregards some intermolecular and molecule-field correlations. In this work, we directly compare results obtained from these approximations when applied to several prototype problems involving the optical response of molecules-in-optical cavities systems. In particular, we show that our recent model investigation [J. Chem. Phys. 157, 114108 (2022)] of the interplay between the electronic strong coupling and molecular nuclear dynamics using the truncated 1-exciton approximation agrees very well with the semiclassical mean-field calculation.

2.
J Chem Phys ; 158(16)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37102454

ABSTRACT

As in the case of a free particle, the initial growth of a broad (relative to lattice spacing) wavepacket placed on an ordered lattice is slow (its time derivative has zero initial slope), and the spread (root mean square displacement) becomes linear in t at a long time. On a disordered lattice, the growth is inhibited for a long time (Anderson localization). We consider site disorder with nearest-neighbor hopping on one- and two-dimensional systems and show via numerical simulations supported by the analytical study that the short time growth of the particle distribution is faster on the disordered lattice than on the ordered one. Such faster spread takes place on time and length scales that may be relevant to the exciton motion in disordered systems.

3.
J Chem Phys ; 157(11): 114108, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36137782

ABSTRACT

A model designed to mimic the implications of the collective optical response of molecular ensembles in optical cavities on molecular vibronic dynamics is investigated. Strong molecule-radiation field coupling is often reached when a large number N of molecules respond collectively to the radiation field. In electronic strong coupling, molecular nuclear dynamics following polariton excitation reflects (a) the timescale separation between the fast electronic and photonic dynamics and the slow nuclear motion on one hand and (b) the interplay between the collective nature of the molecule-field coupling and the local nature of the molecules nuclear response on the other. The first implies that the electronic excitation takes place, in the spirit of the Born approximation, at an approximately fixed nuclear configuration. The second can be rephrased as the intriguing question of whether the collective nature of optical excitation leads to collective nuclear motion following polariton formation resulting in so-called polaron decoupled dynamics. We address this issue by studying the dynamical properties of a simplified Holstein-Tavis-Cummings-type model, in which boson modes representing molecular vibrations are replaced by two-level systems, while the boson frequency and the vibronic coupling are represented by the coupling between these levels (that induces Rabi oscillations between them) and electronic state dependence of this coupling. We investigate the short-time behavior of this model following polariton excitation as well as its response to CW driving and its density of states spectrum. We find that, while some aspects of the dynamical behavior appear to adhere to the polaron decoupling picture, the observed dynamics mostly reflect the local nature of the nuclear configuration of the electronic polariton rather than this picture.

4.
Annu Rev Phys Chem ; 73: 43-71, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34871038

ABSTRACT

Chemical manifestations of strong light-matter coupling have recently been a subject of intense experimental and theoretical studies. Here we review the present status of this field. Section 1 is an introduction to molecular polaritonics and to collective response aspects of light-matter interactions. Section 2 provides an overview of the key experimental observations of these effects, while Section 3 describes our current theoretical understanding of the effect of strong light-matter coupling on chemical dynamics. A brief outline of applications to energy conversion processes is given in Section 4. Pending technical issues in the construction of theoretical approaches are briefly described in Section 5. Finally, the summary in Section 6 outlines the paths ahead in this exciting endeavor.


Subject(s)
Models, Theoretical , Chemistry, Physical , Physical Phenomena
5.
J Chem Phys ; 155(19): 194104, 2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34800951

ABSTRACT

Electron transfer dominates chemical processes in biological, inorganic, and material chemistry. Energetic aspects of such phenomena, in particular, the energy transfer associated with the electron transfer process, have received little attention in the past but are important in designing energy conversion devices. This paper generalizes our earlier work in this direction, which was based on the semiclassical Marcus theory of electron transfer. It provides, within a simple model, a unified framework that includes the deep (nuclear) tunneling limit of electron transfer and the associated heat transfer when the donor and acceptor sites are seated in environments characterized by different local temperatures. The electron transfer induced heat conduction is shown to go through a maximum at some intermediate average temperature where quantum effects are already appreciable, and it approaches zero when the average temperature is very high (the classical limit) or very low (deep tunneling).

6.
Eur Phys J E Soft Matter ; 43(11): 72, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33242169

ABSTRACT

A theory of vibrational excitations based on power-law spatial correlations in the elastic constants (or equivalently in the internal stress) is derived, in order to determine the vibrational density of states D([Formula: see text]) of disordered solids. The results provide the first prediction of a boson peak in amorphous materials where spatial correlations in the internal stresses (or elastic constants) are of power-law form, as is often the case in experimental systems, leading to a logarithmic enhancement of (Rayleigh) phonon attenuation. A logarithmic correction of the form [Formula: see text] is predicted to occur in the plot of the reduced excess DOS for frequencies around the boson peak in 3D. Moreover, the theory provides scaling laws of the density of states in the low-frequency region, including a [Formula: see text] regime in 3D, and provides information about how the boson peak intensity depends on the strength of power-law decay of fluctuations in elastic constants or internal stress. Analytical expressions are also derived for the dynamic structure factor for longitudinal excitations, which include a logarithmic correction factor, and numerical calculations are presented supporting the assumptions used in the theory.

7.
Soft Matter ; 16(33): 7797-7807, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32745155

ABSTRACT

The damping or attenuation coefficient of sound waves in solids due to impurities scales with the wavevector to the fourth power, also known as Rayleigh scattering. In amorphous solids, Rayleigh scattering may be enhanced by a logarithmic factor although computer simulations offer conflicting conclusions regarding this enhancement and its microscopic origin. We present a tensorial replica field-theoretic derivation based on heterogeneous or fluctuating elasticity (HE), which shows that long-range (power-law) spatial correlations of the elastic constants, is the origin of the logarithmic enhancement to Rayleigh scattering of phonons in amorphous solids. We also consider the case of zero spatial fluctuations in the elastic constants, and of power-law decaying fluctuations in the internal stresses. Also in this case the logarithmic enhancement to the Rayleigh scattering law can be derived from the proposed tensorial HE framework.

8.
J Chem Phys ; 151(22): 224509, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31837668

ABSTRACT

A lattice dynamical formalism based on nonaffine response theory is derived for noncentrosymmetric crystals, accounting for long-range interatomic interactions using the Ewald method. The framework takes equilibrated static configurations as input to compute the elastic constants in excellent agreement with both experimental data and calculations under strain. Besides this methodological improvement, which enables faster evaluation of elastic constants without the need of explicitly simulating the deformation process, the framework provides insights into the nonaffine contribution to the elastic constants of α-quartz. It turns out that, due to the noncentrosymmetric lattice structure, the nonaffine (softening) correction to the elastic constants is very large, such that the overall elastic constants are at least 3-4 times smaller than the affine Born-Huang estimate.

9.
Phys Rev E ; 97(6-1): 060102, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30011524

ABSTRACT

The generalized Langevin equation (GLE) can be derived from a particle-bath Hamiltonian, in both classical and quantum dynamics, and provides a route to the (both Markovian and non-Markovian) fluctuation-dissipation theorem (FDT). All previous studies have focused either on particle-bath systems with time-independent external forces only, or on the simplified case where only the tagged particle is subject to the external time-dependent oscillatory field. Here we extend the GLE and the corresponding FDT for the more general case where both the tagged particle and the bath oscillators respond to an external oscillatory field. This is the example of a charged or polarizable particle immersed in a bath of other particles that are also charged or polarizable, under an external ac electric field. For this Hamiltonian, we find that the ensemble average of the stochastic force is not zero, but proportional to the ac field. The associated FDT reads as 〈F_{P}(t)F_{P}(t^{'})〉=mk_{B}Tν(t-t^{'})+(γe)^{2}E(t)E(t^{'}), where F_{p} is the random force, ν(t-t^{'}) is the friction memory function, and γ is a numerical prefactor.

10.
Phys Rev E ; 97(5-1): 053001, 2018 May.
Article in English | MEDLINE | ID: mdl-29906920

ABSTRACT

We use a microscopically motivated generalized Langevin equation (GLE) approach to link the vibrational density of states (VDOS) to the dielectric response of orientational glasses (OGs). The dielectric function calculated based on the GLE is compared with experimental data for the paradigmatic case of two OGs: freon-112 and freon-113, around and just above T_{g}. The memory function is related to the integral of the VDOS times a spectral coupling function γ(ω_{p}), which tells the degree of dynamical coupling between molecular degrees of freedom at different eigenfrequencies. The comparative analysis of the two freons reveals that the appearance of a secondary ß relaxation in freon-112 is due to cooperative dynamical coupling in the regime of mesoscopic motions caused by stronger anharmonicity (absent in freon-113) and is associated with the comparatively lower boson peak in the VDOS. The proposed framework brings together all the key aspects of glassy physics (VDOS with the boson peak, dynamical heterogeneity, dissipation, and anharmonicity) into a single model.

11.
Phys Rev E ; 95(2-1): 022603, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297893

ABSTRACT

We compute the dielectric response of glasses starting from a microscopic system-bath Hamiltonian of the Zwanzig-Caldeira-Leggett type and using an ansatz from kinetic theory for the memory function in the resulting generalized Langevin equation. The resulting framework requires the knowledge of the vibrational density of states (DOS) as input, which we take from numerical evaluation of a marginally stable harmonic disordered lattice, featuring a strong boson peak (excess of soft modes over Debye ∼ω_{p}^{2} law). The dielectric function calculated based on this ansatz is compared with experimental data for the paradigmatic case of glycerol at T≲T_{g}. Good agreement is found for both the reactive (real) part of the response and for the α-relaxation peak in the imaginary part, with a significant improvement over earlier theoretical approaches. On the low-frequency side of the α peak, the fitting supports the presence of ∼ω_{p}^{4} modes at vanishing eigenfrequency as recently shown [E. Lerner, G. During, and E. Bouchbinder, Phys. Rev. Lett. 117, 035501 (2016)PRLTAO0031-900710.1103/PhysRevLett.117.035501]. α-wing asymmetry and stretched-exponential behavior are recovered by our framework, which shows that these features are, to a large extent, caused by the soft boson-peak modes in the DOS.

SELECTION OF CITATIONS
SEARCH DETAIL
...