Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(25): e2400138, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38402444

ABSTRACT

Kesterites, Cu2ZnSn(SxSe1- x)4 (CZTSSe), solar cells suffer from severe open-circuit voltage (VOC) loss due to the numerous secondary phases and defects. The prevailing notion attributes this issue to Sn-loss during the selenization. However, this work unveils that, instead of Sn-loss, elemental inhomogeneity caused by Cu-directional diffusion toward Mo(S,Se)2 layer is the critical factor in the formation of secondary phases and defects. This diffusion decreases the Cu/(Zn+Sn) ratio to 53% at the bottom fine-grain layer, increasing the Sn-/Zn-related bulk defects. By suppressing the Cu-directional diffusion with a blocking layer, the crystal quality is effectively improved and the defect density is reduced, leading to a remarkable photovoltaic coversion efficiency (PCE) of 14.9% with a VOC of 576 mV and a certified efficiency of 14.6%. The findings provide insights into element inhomogeneity, holding significant potential to advance the development of CZTSSe solar cells.

2.
Small ; 20(19): e2308266, 2024 May.
Article in English | MEDLINE | ID: mdl-38100155

ABSTRACT

Developing well-crystallized light-absorbing layers remains a formidable challenge in the progression of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. A critical aspect of optimizing CZTSSe lies in accurately governing the high-temperature selenization reaction. This process is intricate and demanding, with underlying mechanisms requiring further comprehension. This study introduces a precursor microstructure-guided hetero-nucleation regulation strategy for high-quality CZTSSe absorbers and well-performing solar cells. The alcoholysis of 2-methoxyethanol (MOE) and the generation of high gas-producing micelles by adding hydrogen chloride (HCl) as a proton additive into the precursor solution are successfully suppressed. This tailored modification of solution components reduces the emission of volatiles during baking, yielding a compact and dense precursor microstructure. The reduced-roughness surface nurtures the formation of larger CZTSSe nuclei, accelerating the ensuing Ostwald ripening process. Ultimately, CZTSSe absorbers with enhanced crystallinity and diminished defects are fabricated, attaining an impressive 14.01% active-area power conversion efficiency. The findings elucidate the influence of precursor microstructure on the selenization reaction process, paving a route for fabricating high-quality kesterite CZTSSe films and high-efficiency solar cells.

3.
ACS Appl Mater Interfaces ; 12(11): 12717-12726, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32101686

ABSTRACT

Cu(In,Ga)Se2 (CIGS) is considered a promising photovoltaics material due to its excellent properties and high efficiency. However, the complicated deep defects (such as InCu or GaCu) in the CIGS layer hamper the development of polycrystalline CIGS solar cells. Numerous efforts have been employed to passivate these defects which distributed in the grain boundary and the CIGS/CdS interface. In this work, we implemented an effective Ag substituting approach to passivate bulk defects in CIGS absorber. The composition and phase characterizations revealed that Ag was successfully incorporated in the CIGS lattice. The substituting of Ag could boost the crystallization without obviously changing the band gap. The C-V and EIS results demonstrated that the device showed enlarged Wd and beneficial carrier transport dynamics after Ag incorporation. The DLTS result revealed that the deep InCu defect density was dramatically decreased after Ag substituting for Cu. A champion Ag-substituted CIGS device exhibited a remarkable efficiency of 15.82%, with improved VOC of 630 mV, JSC of 34.44 mA/cm2, and FF of 72.90%. Comparing with the efficiency of an unsubstituted CIGS device (12.18%), a Ag-substituted CIGS device exhibited 30% enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...