Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(22): e2310005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38572525

ABSTRACT

Inferior air stability is a primary barrier for large-scale applications of garnet electrolytes in energy storage systems. Herein, a deeply hydrated hydrogarnet electrolyte generated by a simple ion-exchange-induced phase transition from conventional garnet, realizing a record-long air stability of more than two years when exposed to ambient air is proposed. Benefited from the elimination of air-sensitive lithium ions at 96 h/48e sites and unobstructed lithium conduction path along tetragonal sites (12a) and vacancies (12b), the hydrogarnet electrolyte exhibits intrinsic air stability and comparable ion conductivity to that of traditional garnet. Moreover, the unique properties of hydrogarnet pave the way for a brand-new aqueous route to prepare lithium metal stable composite electrolyte on a large-scale, with high ionic conductivity (8.04 × 10-4 S cm-1), wide electrochemical windows (4.95 V), and a high lithium transference number (0.43). When applied in solid-state lithium batteries (SSLBs), the batteries present impressive capacity and cycle life (164 mAh g-1 with capacity retention of 89.6% after 180 cycles at 1.0C under 50 °C). This work not only designs a new sort of hydrogarnet electrolyte, which is stable to both air and lithium metal but also provides an eco-friendly and large-scale fabrication route for SSLBs.

2.
Angew Chem Int Ed Engl ; 63(27): e202404637, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38644436

ABSTRACT

Application of silicon-based anodes is significantly challenged by low initial Coulombic efficiency (ICE) and poor cyclability. Traditional pre-lithiation reagents often pose safety concerns due to their unstable chemical nature. Achieving a balance between water-stability and high ICE in prelithiated silicon is a critical issue. Here, we present a lithium-enriched silicon/graphite material with an ultra-high ICE of ≥110 % through a high-stable lithium pre-storage methodology. Lithium pre-storage prepared a nano-drilled graphite material with surficial lithium functional groups, which can form chemical bonds with adjacent silicon during high-temperature sintering. This results in an unexpected O-Li-Si interaction, leading to in situ pre-lithiation of silicon nanoparticles and providing high stability in air and water. Additionally, the lithium-enriched silicon/graphite materials impart a combination of high ICE, high specific capacity (620 mAh g-1), and long cycling stability (>400 cycles). This study opens up a promising avenue for highly air- and water-stable silicon anode prelithiation methods.

3.
Materials (Basel) ; 16(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37629835

ABSTRACT

To study the flow and strength characteristics of loess-based backfill materials, orthogonal tests were used to design a cemented backfill material combining loess, high-water content materials, cement, and fly ash. By using the range, analysis of variance, and multi-variate regression analysis, influences of four key factors on the initial setting time, diffusivity, compressive strength, and shear strength of the backfill material were investigated. These four factors included the mass concentration of loess water (A), the content of high-water content materials (B), cement content (C), and content of fly ash (D). The results showed that the initial setting time, diffusivity, compressive strength, and shear strength of the backfill material were 13~33 min, 400~580 mm, 0.917-3.605 MPa, and 0.360-0.722 MPa, respectively, all distributed in wide ranges. For the initial setting time, the four factors were listed in descending order as A > D > B > C according to their influences; for diffusivity, the four factors were listed as A > B > C > D; for the compressive strength, the four factors were ranked as A > C > D > B; for the shear strength, the four factors were ranked such that A > C > D > B. With regard to the comprehensive index, the four factors were such that A > B > D > C. That is, the factors were listed in descending order as the mass concentration of loess water, cement content, the content of fly ash, and content of high-water content materials according to their significance in influencing characteristics of the loess-based backfill material. Comprehensive analysis indicated that the fluidity of the material was mainly influenced by the mass concentration of loess water, and the two were negatively correlated. The hydro-consolidation effect of materials with high-water contents accelerated material solidification. The strength of the backfill material was mainly influenced by the cement content while only slightly affected by contents of other materials. In this way, a prediction model for characteristic parameters, namely, fluidity and strength, of the loess-based backfill material under the action of various factors was established.

4.
Small ; 19(29): e2207170, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37021723

ABSTRACT

Electrochemical oxidization and thermodynamic instability agglomeration are a primary challenge in triggering metal-support interactions (MSIs) by immobilizing metal atoms on a carrier to achieve efficient oxygen evolution reactions (OER). Herein, Ru clusters anchored to the VS2 surface and the VS2 nanosheets embedded vertically in carbon cloth (Ru-VS2 @CC) are deliberately designed to realize high reactivity and exceptional durability. In situ Raman spectroscopy reveals that the Ru clusters are preferentially electro-oxidized to form RuO2 chainmail, both affording sufficient catalytic sites and protecting the internal Ru core with VS2 substrates for consistent MSIs. Theoretical calculations elucidate that electrons across the Ru/VS2 interface aggregate toward the electro-oxidized Ru clusters, while the electronic coupling of Ru 3p and O 2p orbitals boosts a positive shift in the Fermi energy level of Ru, optimizing the adsorption capacity of the intermediates and diminishing the migration barriers of the rate-determining steps. Therefore, the Ru-VS2 @CC catalyst demonstrated ultra-low overpotentials of 245 mV at 50 mA cm-2 , while the zinc-air battery maintained a narrow gap (0.62 V) after 470 h of reversible operation. This work has transformed the corrupt into the miraculous and paved a new way for the development of efficient electrocatalysts.

5.
Adv Mater ; 35(39): e2209876, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36639855

ABSTRACT

The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.

6.
ACS Appl Mater Interfaces ; 14(40): 45373-45381, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36168214

ABSTRACT

The pursuit of strong endurance and nonflammable performances has promoted demand for solid-state batteries (SSBs). Meanwhile, the reduction of electrolytes' thickness is the key to improving battery performance. However, a large-scale feasible method to fabricate an ultrathin solid electrolyte exhibiting high ionic conductivities is still a challenge. Here, we show a large-scale feasible method to prepare a succinonitrile/polyacrylonitrile(SN/PAN)-coated Li6.4La3Zr1.4Ta0.6O12 (LLZTO) with flexibility and high ionic conductivity by tape-casting. The unique dual polymer-coated garnet electrolytes exhibit structural stability through mutual promotion, constructing soft interparticle contact that provides fast lithium-ion transfer channels. In essence, the mutual promotion mechanism is that SN can improve the Li+ conductivity of PAN, while PAN can protect SN from aggregation. Therefore, the flexible SN/PAN-coated LLZTO provides high structural stability and satisfactory electrochemical performance, contributing to a high ionic conductivity of 4 × 10-4 S cm-1 at room temperature (RT). In this way, a long lifespan of over 500 cycles and a high discharge capacity (163 mAh g-1) are achieved based on LiFePO4 (LFP) cathodes at 0.2 C.

7.
Sci Rep ; 12(1): 2809, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35181708

ABSTRACT

In order to understand the effects of different patterns of prefabricated fractures and grain size compositions on the fracture characteristics, acoustic emission characteristics and mechanical properties of the rock masses. We conducted compression shear experiments on square rock masses with different modes of prefabricated fractures and different grain size compositions. The experimental results showed that five fracture patterns were produced in specimens with different fracture patterns. The first fracture specimen, the fourth fracture specimen and the fifth fracture specimen were all brittle fractures. The other four specimens were not brittle fractures. The fracture patterns, fracture processes and mechanical characteristics of the different fracture pattern rock masses were revealed. The lowest peak shear stresses were found in specimens consisting of two grain size ranges and the highest peak shear stresses were found in specimens consisting of three grain size ranges. The highest shear displacements corresponding to the peak shear stresses were found in the specimens consisting of three particle size ranges. The effect of different grain size compositions on the peak shear stress and its corresponding shear displacement of the rock mass was revealed. Specimens consisting of one grain size range produced significant fracture and acoustic emission prior to the peak shear stress. The acoustic emission was jumped after the main fracture was formed. The specimen consisting of two grain size ranges produced fractures and strong acoustic emission characteristics after the peak shear stress. Thereafter, fracture reappeared and the acoustic emission signature increased again. As the specimen entered the residual strength phase, the acoustic emission was jumpy. Specimens consisting of three grain size ranges were brittle fractures with weak acoustic emission characteristics after the main fracture has formed. The cumulative energy of shear acoustic emission was the highest for a rock mass consisting of three grain size ranges. The rock mass consisting of three grain size ranges was also the strongest and most difficult to fracture because the grains were more fully embedded in each other.

8.
Sci Rep ; 11(1): 23790, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893657

ABSTRACT

Grain size composition, crack pattern, and crack length have a significant influence on the crack characteristics, mechanical characteristics, and acoustic emission characteristics of rock masses. In this paper, the crack characteristics, mechanical characteristics, and acoustic emission characteristics of rock masses with different grain size compositions, different crack patterns, and different crack lengths were investigated under uniaxial compression. The rock masses were made of rock-like materials. The crack initiation locations and crack propagation directions were different for a specimen comprised of one grain size range compared with specimens comprised of two or three grain size ranges. The specimens comprised of one and three grain size ranges crack progressively. The specimen comprised of two-grain size ranges brittle fracture. The highest peak axial load was found in the specimens comprised of one grain size range. The results showed that tensile wing crack, anti-tensile wing crack, transverse shear crack, compression induced tensile crack, and surface spalling were produced in specimens with different crack orientations. The rock mass with 2 cm long crack started to produce cracks from the tip of the crack extending to the top and bottom surface, soon forming through cracks. The rock was brittle fracture. The axial load reached the maximum and then fell rapidly. The acoustic emission energy reached a rapid maximum and then decreased rapidly. The rock mass with 3 cm long fissures started to produce cracks that only extended from the tip of the fissures to the top surface but not to the bottom surface. The rock mass was progressively fractured. The axial load was progressively decreasing. The acoustic emission energy also rose and fell rapidly several times as the rock mass was progressively fractured. Different rock crack lengths led to different crack processes and crack patterns, resulting in very different acoustic emission characteristics.

9.
Med Sci Monit ; 27: e933109, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34815375

ABSTRACT

BACKGROUND Previous studies showed that the discoidin domain receptor tyrosine kinase 1 (DDR1) is significantly elevated in a variety of cancers, and it is closely related to the occurrence and development of tumors. However, its clinical significance in hepatocellular carcinoma (HCC) is not fully elucidated. So, in this study, we aimed to systemically evaluate the prognostic value of DDR1 in HCC. MATERIAL AND METHODS A total of 200 individuals were enrolled in this study (including 120 HCC patients, 40 chronic hepatitis patients, and 40 health individuals). The contents of DDR1 in serum was measured by enzyme-linked immunosorbent assay (ELISA), while the expression level of DDR1 in para-tumor and tumor tissue was detected by immunohistochemistry staining. Kaplan-Meier, Cox regression analyses, and log-rank test were used to assess the prognostic value. RESULTS The contents of DDR1 in serum of HCC patients was significantly higher compared with chronic hepatitis patients (P<0.01) and health individuals (P<0.001). The expression level of DDR1 in tumors was higher than that in normal liver tissue, and it had relatively strong correlation with DDR1 in serum. We next demonstrated that high DDR1 has utility as a prognostic risk factor for tumor recurrence and metastasis, and it still retains its discrimination ability in low-risk groups (BCLC 0+A). Moreover, DDR1 is as an independent predictor of prognosis in HCC patients with microvascular invasion (MVI), and is strongly associated with epithelial-mesenchymal transition (EMT)-related protein. CONCLUSIONS DDR1 is a novel predictor for HCC recurrence. Integration of serum and tumor DDR1 detection into clinical management would provide convenience and enhanced accuracy in clinical practice.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Discoidin Domain Receptor 1/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Adult , Biomarkers, Tumor/genetics , Humans , Male , Middle Aged , Prognosis
10.
J Cell Physiol ; 235(2): 1051-1064, 2020 02.
Article in English | MEDLINE | ID: mdl-31276200

ABSTRACT

Mitofusin 2 (MFN2) is a regulatory protein participating in mitochondria dynamics, cell proliferation, death, differentiation, and so on. This study aims at revealing the functional role of MFN2 in the pluripotency maintenance and primitive differetiation of embryonic stem cell (ESCs). A dox inducible silencing and routine overexpressing approach was used to downregulate and upregulate MFN2 expression, respectively. We have compared the morphology, cell proliferation, and expression level of pluripotent genes in various groups. We also used directed differentiation methods to test the differentiation capacity of various groups. The Akt signaling pathway was explored by the western blot assay. MFN2 upregulation in ESCs exhibited a typical cell morphology and similar cell proliferation, but decreased pluripotent gene markers. In addition, MFN2 overexpression inhibited ESCs differentiation into the mesendoderm, while MFN2 silencing ESCs exhibited a normal cell morphology, slower cell proliferation and elevated pluripotency markers. For differentiation, MFN2 silencing ESCs exhibited enhanced three germs' differentiation ability. Moreover, the protein levels of phosphorylated Akt308 and Akt473 decreased in MFN2 silenced ESCs, and recovered in the neural differentiation process. When treated with the Akt inhibitor, the neural differentiation capacity of the MFN2 silenced ESCs can reverse to a normal level. Taken together, the data indicated that the appropriate level of MFN2 expression is essential for pluripotency and differentiation capacity in ESCs. The increased neural differentiation ability by MFN2 silencing is strongly related to the Akt signaling pathway.


Subject(s)
Cell Differentiation/physiology , GTP Phosphohydrolases/metabolism , Gene Expression Regulation/physiology , Mitochondrial Proteins/metabolism , Neurons/physiology , Proto-Oncogene Proteins c-akt/metabolism , Biomarkers/metabolism , Cell Proliferation/physiology , Cells, Cultured , Cloning, Molecular , Doxorubicin/pharmacology , Embryonic Stem Cells , GTP Phosphohydrolases/genetics , Gene Expression Regulation/drug effects , Gene Silencing , Humans , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering , Topoisomerase II Inhibitors/pharmacology
11.
J Oral Microbiol ; 9(1): 1324725, 2017.
Article in English | MEDLINE | ID: mdl-28748030

ABSTRACT

This study investigated if chronic obstructive pulmonary disease (COPD) is correlated with periodontitis via periodontal microbiota and if certain bacteria affect periodontitis as well as COPD. Moreover, the study investigated whether suffering from COPD is associated with a decrease in the richness and diversity of periodontal microbiota. Subgingival plaque was obtained from 105 patients. Bacterial DNA was isolated from 55 COPD and 50 non-COPD participants (either with or without periodontitis). 16S rRNA gene metagenomic sequencing was used to characterize the microbiota and to determine taxonomic classification. In the non-periodontitis patients, suffering from COPD resulted in a decrease in bacteria richness and diversity in the periodontal microenvironment. An increase in the genera Dysgonomonas, Desulfobulbus, and Catonella and in four species (Porphyromonas endodontalis, Dysgonomonas wimpennyi, Catonella morbi, and Prevotella intermedia) in both COPD and periodontitis patients suggests that an increase in these periodontitis-associated microbiota may be related to COPD. Three genera (Johnsonella, Campylobacter, and Oribacterium) were associated with COPD but not with periodontitis. The decrease in the genera Arcanobacterium, Oribacterium, and Streptomyces in COPD patients implies that these genera may be health-associated genera, and the decrease in these genera may be related to disease. These data support the hypothesis that COPD is correlated with periodontitis via these significantly changed specific bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...