Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834567

ABSTRACT

In recent years, Zn and its alloys have become some of the most promising degradable metals as in vivo implants due to their acceptable biocompatibility and more suitable degradation rate compared with Mg-based and Fe-based alloys. However, the degradation rate of Zn-based materials after implantation in the body for orthopedic applications is relatively slow, leading to long-term retention of the implants after fulfilling their missions. Moreover, the excessive release of Zn2+ during the degradation process of Zn-based implants usually leads to high cytotoxicity and delayed osseointegration. To provide a feasible solution to the problem faced by Zn-based implants, a Zn-Ca composite was fabricated by an air pressure infiltration method in this work. The XRD pattern of the composite suggests that the composite is fully composed of Zn-Ca intermetallic compounds. The degradation tests in vitro show that the composite has a much higher degradation rate than pure Zn, and the high Ca content regions in the composite can preferentially degrade as sacrificial anodes. In addition, the composite can efficiently induce Ca-P deposition during immersion tests in Hank's solution. Cytotoxicity tests indicate that L-929 cells exhibit around 82% cell viability (Grade 1) even after being cultured in the 100% extract prepared from the Zn-Ca composite for 1 day and show excellent cell viability.

2.
Materials (Basel) ; 16(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37629832

ABSTRACT

To solve the problem of the low coercivity of Nd-Fe-B-based nanowires impeding their application in magnetic storage media, highly ordered Nd-Fe-B/Fe-Co composite nanowires were fabricated in an anodic alumina template by means of the alternating electrochemical deposition method. In this paper, the effect of soft and hard magnetic phase compositing on the magnetic properties of Nd-Fe-B-based nanowires was investigated, and the coercivity improvement mechanism was demonstrated. The results show that after annealing at 600 °C for 2 h, Nd-Fe-B/Fe-Co nanowires crystallize into a multiphase structure containing a hard Nd2(Fe, Co)14B phase and soft NdB4, NdB6, Fe7Nd, and Fe7Co3 phases. It is characterized that the Nd2(Fe, Co)14B phase preferentially nucleates, followed by NdB4 + NdB6 + Fe7Nd, while Fe7Co3 has been formed in as-deposited nanowires. The existence of a Nd2(Fe, Co)14B phase with high anisotropy fields, the remanence enhancement effect produced by exchange coupling between hard-soft magnetic phases, and the pinning effect between different phases make the composite nanowires approximately exhibit single hard magnetic phase characteristics with coercivity and remanence ratio as high as 4203.25 Oe and 0.89. The results indicate that synthesizing Nd-Fe-B/Fe-Co exchange-coupled composite nanowires via alternating electrodeposition is an effective way to optimize the magnetic performance of Nd-Fe-B-based nanowires.

3.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569968

ABSTRACT

The grain size plays a pivotal role in determining the properties of the alloy. The grain size can be significantly decreased by adding inoculants. Aiming to address the shortcomings of existing inoculants, the Al3Ti-Al2O3/Al inoculant was successfully prepared using Al-Ti master alloy and Al2O3 whiskers as raw materials. With the aid of ultrasonic energy, the Al2O3 whiskers were uniformly dispersed within the inoculants. Under the combined action of ultrasonic and titanium, the Al2O3 whiskers were broken into small particles at high temperature. To enhance the morphology of Al3Ti and achieve even particle dispersion throughout the matrix, vacuum rapid quenching treatment was applied to the inoculant. The SEM test results indicated a significant reduction in particle size after vacuum rapid quenching. The Al3Ti-Al2O3/Al inoculants exhibited excellent grain refinement effects on the weldable Al-Cu-Mn alloy. Crystallographic calculations and HRTEM analysis revealed that Al2O3 and Al have orientation relationships, indicating their potential as effective heterogeneous nucleation sites. The mechanical properties of the Al-Cu-Mn alloy were obviously improved after the Al3Ti-Al2O3/Al inoculant was added.

4.
Materials (Basel) ; 16(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37444974

ABSTRACT

A TiAl composite containing hybrid particles and whisker reinforcements is fabricated by vacuum melting. The results of this study show that the comprehensive mechanical properties and refining effect of the material are best when the content of reinforcement is 1 wt.%, and then the mechanical properties begin to deteriorate as the content increases further. Finely dispersed NbC particles and uniformly dispersed Ti2AlC whiskers are the ideal second phases. The synergistic strengthening effect of NbC particles and in situ Ti2AlC whiskers are key to the improvement of mechanical properties. Compared with the TiAlNb matrix, the fracture stress/strain of the composite at 1073 K is improved from 612 MPa/19.4% to 836 MPa/26.6%; the fracture toughness at room temperature is improved from 18.8 MPa/m2 to 27.4 MPa/m2.

5.
Materials (Basel) ; 16(9)2023 Apr 22.
Article in English | MEDLINE | ID: mdl-37176174

ABSTRACT

High chromium cast iron (HCCI) has been widely used as wear-resistant material in the industry. Alloying is an effective way to improve the microstructure and mechanical properties of HCCI. This paper added multi-component V-Fe-Ti-Nb-C-Zr-B alloy (VFC) to HCCI, showing a significant synergistic solution-strengthening effect. The results show that the added V-Ti-Nb-B are dissolved in M7C3 carbide to form the (Cr, Fe, V, Ti, Nb)7(C, B)3 alloy carbide, and a small amount of V and all Zr are dissolved in austenite and martensite. Adding VFC into HCCI improved the hardenability of HCCI, decreased the residual austenite content from 6.0 wt% to 0.9 wt%, increased the martensite content from 70.7 wt% to 82.5 wt%, and changed the structure and content of M7C3 carbide. These changes increased the hardness of as-cast and heat-tread HCCI by 1.4% and 4.1%, increased the hardness of austenite and martensite by 7.9% and 7.0%, increased the impact toughness by 16.9%, and decreased the friction coefficient and wear loss by 2.3 % and 7.0 %, respectively. Thus, the hardness, toughness, wear resistance, and friction resistance of HCCI alloy are improved simultaneously.

6.
Biomed Mater ; 18(2)2023 02 28.
Article in English | MEDLINE | ID: mdl-36758244

ABSTRACT

The development of novel antibacterial nano-materials with synergistic biological effects has attracted extensive interest of the researchers. In the study, 0.5 mol% Ag and 0.5 mol% Cu co-doped K2Ti6O13(0.5 Ag-0.5 Cu-KTO) nanomaterial was successfully synthesized using two-step method of sol-gel and hydrothermal synthesis. The crystal structure of 0.5 Ag-0.5 Cu-KTO was the same as that of monoclinic K2Ti6O13. Ag ions and Cu ions were uniformly loaded on K2Ti6O13by replacing partial Ti ions, so that these antibacterial ions could be slowly released. High specific surface area of 0.5 Ag-0.5 Cu-KTO (337.6 m2g-1) provided more surface active sites for Ag-Cu doping and adsorption. More negative surface zeta potential (-32.83 mV in phosphate buffer solution and -21.45 mV in physiological saline solution, respectively) would be beneficial to prevent the aggregation of the nanowires in physiological environment. Under the same doping amount, compared to 1.0 mol% Cu doped K2Ti6O13, 0.5 Ag-0.5 Cu-KTO exhibited better antibacterial performance against gram-positive and gram-negative bacteria at only 100 µg ml-1dose concentration, near to 1.0 mol% Ag doped K2Ti6O13(1.0 Ag-KTO). And 0.5 Ag-0.5 Cu-KTO showed more excellent biocompatibility than 1.0 Ag-KTO, which was attribute to the introduction of Cu ions effectively decreasing the hemolytic and cytotoxic risks from Ag ions. As expected, the synthesized 0.5 Ag-0.5 Cu-KTO nanowires demonstrated excellent structural stability, high antibacterial activity, good hemocompatibility and cytocompatibility owing to the synergistic effects of Cu and Ag ions. 0.5 Ag-0.5 Cu-KTO nanowires will be a promising antimicrobial candidate for biomedical applications.


Subject(s)
Anti-Bacterial Agents , Nanowires , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Ions
7.
Materials (Basel) ; 15(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295294

ABSTRACT

Ti-based alloy Ti75Zr11Si9Fe5 (At %) and Ti66Zr11Si15Fe5Mo3 (At %) ribbons are fabricated by a single roller spun-melt technique, according to the three empirical rules. Both alloys are found to have a large, supercooled liquid region (ΔTx) before crystallization that reaches 80-90 K. The results show that both alloys possess excellent glass-forming abilities. The electrochemical measurement proves both amorphous alloys possess relatively high corrosion resistance in 3 mass% NaCl solution.

8.
Materials (Basel) ; 15(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160886

ABSTRACT

A Zn-3Mg-1Ti alloy was fabricated by ultrasonic treatment of Zn-Mg alloy melt using a Ti ultrasonic radiation rod. The microstructure, phase structure, mechanical properties, degradation property, and in vitro cytotoxicity were investigated systematically. The obtained Zn-3Mg-1Ti alloy is composed of the Zn, Mg2Zn11, and TiZn16. Owing to the grain refinement and second phase reinforcement, the mechanical properties of Zn-3Mg-1Ti alloy is improved. In addition, the Zn-3Mg-1Ti alloy exhibits minimal cytotoxicity compared to pure Zn and Zn-1Ti alloy. Electrochemical tests show that the Zn-3Mg-1Ti alloy has an appropriate degradation rate in Hank's solution.

9.
Materials (Basel) ; 15(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35057126

ABSTRACT

The mechanical properties of iron-rich Al-Si alloy is limited by the existence of plenty of the iron-rich phase (ß-Al5FeSi), whose unfavorable morphology not only splits the matrix but also causes both stress concentration and interface mismatch with the Al matrix. The effect of the cooling rate on the tensile properties of Fe-rich Al-Si alloy was studied by the melt spinning method at different rotating speeds. At the traditional casting cooling rate of ~10 K/s, the size of the needle-like ß-Al5FeSi phase is about 80 µm. In contrast, the size of the ß-Al5FeSi phase is reduced to 500 nm and the morphology changes to a granular morphology with the high cooling rate of ~104 K/s. With the increase of the cooling rate, the morphology of the ß-Al5FeSi phase is optimized, meanwhile the tensile properties of Fe-rich Al-Si alloy are greatly improved. The improved tensile properties of the Fe-rich Al-Si alloy is attributed to the combination of Fe-rich reinforced particles and the granular silicon phase provided by the high cooling rate of the melt spinning method.

10.
Sci Rep ; 8(1): 2364, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29403009

ABSTRACT

To meet the more rigorous requirement in aerospace industry, recent studies on strengthening and toughening TiAl alloys mostly focus on high Nb addition, which inevitably bring in an increasing of density. In this study, a carbon fibers coated with graphene reinforced TiAl alloy composite was fabricated by powder metallurgy, melt spun and vacuum melting. This composite got remarkable mechanical properties combined with a prominent density reduction. In contrast with pure TiAl ingots, this sample exhibits an average fracture strain from 16% up to 26.27%, and an average strength from 1801 MPa up to 2312 MPa. Thus, we can achieve a new method to fabricate this low-density, good mechanical performance TiAl composite which could bring in more opportunities for application in aerospace industry.

11.
Materials (Basel) ; 10(12)2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29189720

ABSTRACT

Magnesium-based bulk metallic glass matrix composites (BMGMCs) have better plasticity than the corresponding bulk metallic glasses (BMGs); however, their strength and density are often compromised due to the fact that the effective reinforcement phase is mostly plastic heavy metal. For lightweight SiC-particle reinforced BMGMCs, interface wettability and the sharpness of the particles often reduce the strengthening effect. In this work, SiC particles were coated with a thin Cu coating by electroless plating, and added to Mg54Cu26.5Ag8.5Gd11 melt in an amount of 5 wt % to prepare a BMGMC. The microstructure of the interface, mechanical behavior and fracture morphology of the BMGMC were studied by scanning electron microscopy and quasi-static compression testing. The results showed that the Cu coating improved the wettability between SiC and the matrix alloy without obvious interfacial reactions, leading to the dispersion of SiC particles in the matrix. The addition of Cu-coated SiC particles improved the plastic deformation ability of Mg54Cu26.5Ag8.5Gd11 BMG, proving that electroless plating was an effective method for controlling the interface microstructure and mechanical behavior of BMGMCs.

12.
J Am Chem Soc ; 125(18): 5284-5, 2003 May 07.
Article in English | MEDLINE | ID: mdl-12720434

ABSTRACT

TiS2 nanotubes, which were synthesized through a chemical transport reaction, are very effective in reversible hydrogen absorption and desorption with the capacity of 2.5 wt %.

13.
J Nanosci Nanotechnol ; 3(5): 410-2, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14733152

ABSTRACT

This paper deals with the interaction mechanism between in situ nanometer-grade TiN-AlN particles and the solid/liquid (S/L) interface during the solidification of an in situ TiN-AlN/Al composite. According to the setting of a force balance for the particles in front of the S/L interface during solidification, F = F(buoyant) + F(repulsive) + F(viscous). We obtained the relationship between the critical cooling velocity of the liquid composite, Vr, and the size of the ceramic particle, rp. By this relationship formula, we can know that the S/L interface engulfs particles or pushes them to the crystal grain boundary during the solidification of a TiN-AlN/Al composite. It is found that Vr is proportional to the radius of ceramic particles by transmission electron microscope (TEM) observation. The TEM test indicates that the smaller the particle is, the more easily the S/L interface engulfs particles.


Subject(s)
Aluminum Compounds/chemistry , Ceramics/chemistry , Crystallization/methods , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Titanium/chemistry , Aluminum Compounds/chemical synthesis , Ceramics/chemical synthesis , Macromolecular Substances , Materials Testing , Models, Molecular , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...