Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4882, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573371

ABSTRACT

Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an "atomic size misfit" strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FEpropanol) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FEpropanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C-C coupling ability, thus promoting the CO-to-n-propanol conversion.

2.
Nat Commun ; 14(1): 368, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36690634

ABSTRACT

Selective two-electron (2e-) oxygen reduction reaction (ORR) offers great opportunities for hydrogen peroxide (H2O2) electrosynthesis and its widespread employment depends on identifying cost-effective catalysts with high activity and selectivity. Main-group metal and nitrogen coordinated carbons (M-N-Cs) are promising but remain largely underexplored due to the low metal-atom density and the lack of understanding in the structure-property correlation. Here, we report using a nanoarchitectured Sb2S3 template to synthesize high-density (10.32 wt%) antimony (Sb) single atoms on nitrogen- and sulfur-codoped carbon nanofibers (Sb-NSCF), which exhibits both high selectivity (97.2%) and mass activity (114.9 A g-1 at 0.65 V) toward the 2e- ORR in alkaline electrolyte. Further, when evaluated with a practical flow cell, Sb-NSCF shows a high production rate of 7.46 mol gcatalyst-1 h-1 with negligible loss in activity and selectivity in a 75-h continuous electrolysis. Density functional theory calculations demonstrate that the coordination configuration and the S dopants synergistically contribute to the enhanced 2e- ORR activity and selectivity of the Sb-N4 moieties.


Subject(s)
Hydrogen Peroxide , Metals , Humans , Antimony , Carbon , Hypoxia , Nitrogen , Sulfur
3.
Nat Commun ; 13(1): 1281, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35277493

ABSTRACT

Grid-scale energy storage is essential for reliable electricity transmission and renewable energy integration. Redox flow batteries (RFB) provide affordable and scalable solutions for stationary energy storage. However, most of the current RFB chemistries are based on expensive transition metal ions or synthetic organics. Here, we report a reversible chlorine redox flow battery starting from the electrolysis of aqueous NaCl electrolyte and the as-produced Cl2 is extracted and stored in the carbon tetrachloride (CCl4) or mineral spirit flow. The immiscibility between the CCl4 or mineral spirit and NaCl electrolyte enables a membrane-free design with an energy efficiency of >91% at 10 mA/cm2 and an energy density of 125.7 Wh/L. The chlorine flow battery can meet the stringent price and reliability target for stationary energy storage with the inherently low-cost active materials (~$5/kWh) and the highly reversible Cl2/Cl- redox reaction.

4.
Front Psychol ; 13: 1056673, 2022.
Article in English | MEDLINE | ID: mdl-36687833

ABSTRACT

The impact of climate change on tourism has always been an important topic for research in the field of international tourism, and haze has been widely recognized as the primary negative factor affecting the development of inbound tourism in China. In this study, we first conduct a theoretical analysis of the mechanism through which haze influences the tourism industry, and then we empirically analyze the impact on China's inbound tourism using surface particulate matter (PM2.5) concentrations as a proxy for haze, based on provincial panel data from 1998 to 2016. The empirical results show that haze not only has an inhibitory effect on inbound tourism, but also significantly reduces the average length of stay of international tourists. In addition, while there are significant regional differences in the crowding-out effect of haze pollution on inbound tourism, the effect varies depending on the origin of inbound tourists, exhibiting the greatest negative impact on inbound tourism from Taiwan and the smallest from foreign countries. Our research highlights that haze pollution can led to the change of human tourism behavior which enrich the literature on tourism and haze.

5.
ACS Nano ; 15(11): 18125-18134, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34730328

ABSTRACT

The development of strategies for tuning the electronic structure of the metal sites in single-atom catalysts (SACs) is the key to optimizing their activity. Herein, we report that iodine doping within the carbon matrix of a cobalt-nitrogen-carbon (Co-N-C) catalyst can effectively modulate its electronic structure and catalytic activity toward the hydrogen evolution reaction (HER). The iodine-doped Co-N-C catalyst shows exceptional HER activity in acid with an overpotential of merely 52 mV at 10 mA cm-2, a small Tafel slope of 56.1 mV dec-1, making it among the best SACs based on both precious and nonprecious metals. Moreover, this catalyst possesses a high turnover frequency (TOF) value of 1.88 s-1 (η = 100 mV), which is about 1 order of magnitude larger than that (0.2 s-1) of the iodine-free counterpart. Experimental and theoretical studies demonstrate that the introduction of iodine dopants lowers the chemical oxidation state of the Co sites, resulting in the optimized hydrogen adsorption and facilitated HER kinetics. This work provides an alternative strategy to regulate the electronic structure of SACs for improved performance.

6.
Adv Mater ; 33(41): e2103533, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34425039

ABSTRACT

Metal- and nitrogen-doped carbon (M-N-C) materials as a unique class of single-atom catalysts (SACs) have increasingly attracted attention as the replacement of platinum for the hydrogen evolution reaction (HER); however, their employment as HER electrodes at high current densities of industrial level remains a grand challenge. Herein, an aligned porous carbon film embedded with single-atom Co-N-C sites of exceptional activity and stability at high current densities is designed. Within the film, the atomic CoNx moieties exhibit high intrinsic activity, while the multiscale porosity of the carbon frameworks with vertically aligned microchannels afford facilitated mass transfer under the conditions of high production rate and ultrathick electrodes. Moreover, the superwetting properties of the film promote electrolyte wetting and ensure the timely removal of the evolving H2 gas bubbles. The as-designed film can work as an efficient HER electrode to deliver 500 and 1000 mA cm-2 in acid at overpotentials of 272 and 343 mV, respectively, and can operate uninterruptedly and stably at 1000 mA cm-2 for at least 32 h under static conditions. These findings pave the road toward the rational design of SACs with improved activity and stability at high current densities in gas-evolving electrocatalytic processes.

7.
Angew Chem Int Ed Engl ; 60(21): 11943-11948, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33689220

ABSTRACT

Water-in-salt electrolytes (WISE) have largely widened the electrochemical stability window (ESW) of aqueous electrolytes by formation of passivating solid electrolyte interphase (SEI) on anode and also absorption of the hydrophobic anion-rich double layer on cathode. However, the cathodic limiting potential of WISE is still too high for most high-capacity anodes in aqueous sodium-ion batteries (ASIBs), and the cost of WISE is also too high for practical application. Herein, a low-cost 19 m (m: mol kg-1 ) bi-salts WISE with a wide ESW of 2.8 V was designed, where the low-cost 17 m NaClO4 extends the anodic limiting potential to 4.4 V, while the fluorine-containing salt (2 m NaOTF) extends the cathodic limiting potential to 1.6 V by forming the NaF-Na2 O-NaOH SEI on anode. The 19 m NaClO4 -NaOTF-H2 O electrolyte enables a 1.75 V Na3 V2 (PO4 )3 ∥Na3 V2 (PO4 )3 full cell to deliver an appreciable energy density of 70 Wh kg-1 at 1 C with a capacity retention of 87.5 % after 100 cycles.

8.
Angew Chem Int Ed Engl ; 60(19): 10577-10582, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33629447

ABSTRACT

In electrochemical energy storage and conversion systems, the anodic oxygen evolution reaction (OER) accounts for a large proportion of the energy consumption. The electrocatalytic urea oxidation reaction (UOR) is one of the promising alternatives to OER, owing to its low thermodynamic potential. However, owing to the sluggish UOR kinetics, its potential in practical use has not been unlocked. Herein, we developed a tungsten-doped nickel catalyst (Ni-WOx ) with superior activity towards UOR. The Ni-WOx catalyst exhibited record fast reaction kinetics (440 mA cm-2 at 1.6 V versus reversible hydrogen electrode) and a high turnover frequency of 0.11 s-1 , which is 4.8 times higher than that without W dopants. In further experiments, we found that the W dopant regulated the local charge distribution of Ni atoms, leading to the formation of Ni3+ sites with superior activity and thus accelerating the interfacial catalytic reaction. Moreover, when we integrated Ni-WOx into a CO2 flow electrolyzer, the cell voltage is reduced to 2.16 V accompanying with ≈98 % Faradaic efficiency towards carbon monoxide.

9.
ACS Appl Mater Interfaces ; 13(7): 8497-8506, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33586950

ABSTRACT

Potassium-ion hybrid capacitors (KIHCs) have attracted growing attention due to the natural abundance and low cost of potassium. However, KIHCs are still limited by sluggish redox reaction kinetics in electrodes during the accommodation of large-sized K+. Herein, a starch-derived hierarchically porous nitrogen-doped carbon (SHPNC) anode and active carbon cathode were rationally designed for dual-carbon electrode-based KIHCs with high energy density. The hierarchical structure and rich doped nitrogen in the SHPNC anode result in a distensible interlayer space to buffer volume expansion during K+ insertion/extraction, offers more electrochemical active sites to achieve high specific capacity, and has highly efficient channels for fast ion/electron transports. The in situ Raman and ex situ TEM demonstrated a reversible electrochemical behavior of the SHPNC anode. Thus, the SHPNC anode delivers superior cycling stability and a high reversible capacity (310 mA h g-1 at 50 mA g-1). In particular, the KIHCs assembled by the SHPNC anode and commercial active carbon cathode can deliver a high energy density of 165 W h kg-1 at a current density of 50 mA g-1 and an ultra-long cycle life of 10,000 cycles at 1 A g-1 (calculated based on the total mass of the anode and cathode).

10.
Sci Bull (Beijing) ; 66(7): 685-693, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-36654444

ABSTRACT

Lithium (Li) metal is widely considered as a promising anode for next-generation lithium metal batteries (LMBs) due to its high theoretical capacity and lowest electrochemical potential. However, the uncontrollable formation of Li dendrites has prevented its practical application. Herein, we propose a kind of multi-functional electrolyte additives (potassium perfluorinated sulfonates) from the multi-factor principle for electrolyte additive molecular design (EDMD) view to suppress the Li dendrite growth. The effects of these additives are revealed through experimental results, molecular dynamics simulations and first-principles calculations. Firstly, K+ can form an electrostatic shield on the surface of Li anode to prevent the growth of Li dendrites. Secondly, potassium perfluorinated sulfonates can improve the activity of electrolytes as co-conductive salts, and lower the electro-potential of Li nucleation. Thirdly, perfluorinated sulfonate anions not only can change the Li+ solvation sheath structure to decrease the desolvation energy barrier and increase the ion migration rate, but also can be partly decomposed to form the superior solid electrolyte interphase (SEI). Benefited from the synergistic effects, an outstanding cycle life over 250 h at 1 mA cm-2 is achieved in symmetric Li||Li cells. In particular, potassium perfluorinated sulfonate additives (e.g., potassium perfluorohexyl sulfonate, denoted as K+PFHS) can also contribute to the formation of high-quality cathode electrolyte interphase (CEI). As a result, Li||LiNi0.6Mn0.2Co0.2O2 full cells exhibit significantly enhanced cycling stability. This multi-factor principle for EDMD offers a unique insight on understanding the electrochemical behavior of ion-type electrolyte additives on both the Li metal anode and high-voltage cathode.

11.
Proc Natl Acad Sci U S A ; 117(26): 14712-14720, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32554498

ABSTRACT

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g-1 (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg-1 The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.

12.
J Am Chem Soc ; 142(19): 8918-8927, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32319764

ABSTRACT

Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage fade, and poor cycling stability because of the continuous oxygen release, structural rearrangements due to irreversible transition-metal migration, and serious side reactions between the delithiated cathode and electrolyte. Herein, we report that these challenges are migrated by using a stable O2-structured Li1.2Ni0.13Co0.13Mn0.54O2 (O2-LR-NCM) and all-fluorinated electrolyte. The O2-LR-NCM can restrict the transition metals migrating into the Li layer, and the in situ formed fluorinated cathode-electrolyte interphase (CEI) on the surface of the O2-LR-NCM from the decomposition of all-fluorinated electrolyte during initial cycles effectively restrains the structure transition, suppresses the O2 release, and thereby safeguards the transition metal redox couples, enabling a highly reversible and stable oxygen redox reaction. O2-LR-NCM in all fluorinated electrolytes achieves a high initial CE of 99.82%, a cycling CE of >99.9%, a high reversible capacity of 278 mAh/g, and high capacity retention of 83.3% after 100 cycles. The synergic design of electrolyte and cathode structure represents a promising direction to stabilize high-energy cathodes.

13.
Microorganisms ; 8(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151071

ABSTRACT

In this study, a novel chlorimuron-ethyl-degrading Pleurotus eryngiu-SMS-CB was successfully constructed for remediation of soil historically contaminated with chlorimuron-ethyl. The P. eryngiu-SMS-CB was prepared using efficient chlorimuron-ethyl-degrading cocultured bacteria, Rhodococcus sp. D310-1 and Enterobacter sp. D310-5, with spent mushroom substrate (SMS, a type of agricultural waste containing laccase) of Pleurotus eryngiu as a carrier. The chlorimuron-ethyl degradation efficiency in historically chlorimuron-ethyl-contaminated soil reached 93.1% at the end of 80 days of treatment with the P. eryngiu-SMS-CB. Although the P. eryngiu-SMS-CB altered the microbial community structure at the beginning of the 80 days, the bacterial population slowly recovered after 180 days; thus, the P. eryngiu-SMS-CB does not have an excessive effect on the long-term microbial community structure of the soil. Pot experiments indicated that contaminated soil remediation with P. eryngiu-SMS-CB reduced the toxic effects of chlorimuron-ethyl on wheat. This paper is the first to attempt to use chlorimuron-ethyl-degrading bacterial strains adhering to P. eryngiu-SMS to remediate historically chlorimuron-ethyl-contaminated soil, and the microbial community structure and P. eryngiu-SMS-CB activity in chlorimuron-ethyl-contaminated soil were traced in situ to evaluate the long-term effects of this remediation.

14.
Adv Mater ; 32(12): e1906427, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32058645

ABSTRACT

Metallic lithium is the most competitive anode material for next-generation lithium (Li)-ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)-enriched solid electrolyte interphase (SEI) through the lithiation of surface-fluorinated mesocarbon microbeads (MCMB-F) anodes. The robust LiF-enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF-enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm-2 , a high CE of >99.2% for Li plating/stripping in FEC-based electrolyte is achieved within 25 cycles. Coupling the pre-lithiated MCMB-F (Li@MCMB-F) anode with a commercial LiFePO4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4 //Li@MCMB-F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm-2 for 110 times at a negligible capacity decay of 0.01% per cycle.

15.
J Am Chem Soc ; 142(5): 2438-2447, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31927894

ABSTRACT

Engineering a stable solid electrolyte interphase (SEI) is critical for suppression of lithium dendrites. However, the formation of a desired SEI by formulating electrolyte composition is very difficult due to complex electrochemical reduction reactions. Here, instead of trial-and-error of electrolyte composition, we design a Li-11 wt % Sr alloy anode to form a SrF2-rich SEI in fluorinated electrolytes. Density functional theory (DFT) calculation and experimental characterization demonstrate that a SrF2-rich SEI has a large interfacial energy with Li metal and a high mechanical strength, which can effectively suppress the Li dendrite growth by simultaneously promoting the lateral growth of deposited Li metal and the SEI stability. The Li-Sr/Cu cells in 2 M LiFSI-DME show an outstanding Li plating/stripping Coulombic efficiency of 99.42% at 1 mA cm-2 with a capacity of 1 mAh cm-2 and 98.95% at 3 mA cm-2 with a capacity of 2 mAh cm-2, respectively. The symmetric Li-Sr/Li-Sr cells also achieve a stable electrochemical performance of 180 cycles at an extremely high current density of 30 mA cm-2 with a capacity of 1 mAh cm-2. When paired with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes, Li-Sr/LFP cells in 2 M LiFSI-DME electrolytes and Li-Sr/NMC811 cells in 1 M LiPF6 in FEC:FEMC:HFE electrolytes also maintain excellent capacity retention. Designing SEIs by regulating Li-metal anode composition opens up a new and rational avenue to suppress Li dendrites.

16.
Angew Chem Int Ed Engl ; 58(49): 17820-17826, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31571354

ABSTRACT

The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.

17.
Small ; 15(34): e1902659, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31240839

ABSTRACT

Sodium-ion capacitors (SICs) have attracted enormous attention due to their high energy density and high power density. In this work, N and S codoped hollow carbon nanobelts (N/S-HCNs) are synthesized by a self-templated method. The as-synthesized carbon nanobelts exhibit excellent performance in pseudocapacitance and electric double layer anions adsorption. After pairing the N/S-HCNs cathode with a tin foil anode in a carbonate electrolyte, the obtained SIC achieves a high specific capacity of 400 mAh g-1 at 1 A g-1 (based on the mass of cathode material) and energy density of 250.35 Wh kg-1 at 676 W kg-1 (based on the total mass of cathode and anode materials). Besides, the presented SIC also demonstrates high cycling stability with almost 100% capacity retention after 10 000 cycles, which is among the best results of the reported SICs, suggesting the potential for high-performance energy storage applications.

18.
Nano Lett ; 19(1): 538-544, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30550291

ABSTRACT

Antimony- (Sb) based materials have been considered as one of promising anodes for sodium ion batteries (SIBs) owing to their high theoretical capacities and appropriate sodium inserting potentials. So far, the reported energy density and cycling stability of the Sb-based anodes for SIBs are quite limited and need to be significantly improved. Here, we develop a novel Sb/C hybrid encapsulating the Sb nanorods into highly conductive N and S codoped carbon (Sb@(N, S-C)) frameworks. As an anode for SIBs, the Sb@(N, S-C) hybrid maintains high reversible capacities of 621.1 mAh g-1 at 100 mA g-1 after 150 cycles, and 390.8 mAh g-1 at 1 A g-1 after 1000 cycles. At higher current densities of 2, 5, and 10 A g-1, the Sb@(N, S-C) hybrid also can display high reversible capacities of 534.4, 430.8, and 374.7 mAh g-1, respectively. Such impressive sodium storage properties are mainly attributed to the unique cross-linked carbon networks providing highly conductive frameworks for fast transfer of ions and electrons, alleviating the volume expansion and preventing the agglomeration of Sb nanorods during the cycling.

19.
Small ; 14(20): e1800737, 2018 May.
Article in English | MEDLINE | ID: mdl-29665265

ABSTRACT

Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e- transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles.

20.
Nano Lett ; 17(6): 3830-3836, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28475340

ABSTRACT

Metallic tin has been considered as one of the most promising anode materials both for lithium (LIBs) and sodium ion battery (NIBs) because of a high theoretical capacity and an appropriate low discharge potential. However, Sn anodes suffer from a rapid capacity fading during cycling due to pulverization induced by severe volume changes. Here we innovatively synthesized pipe-wire TiO2-Sn@carbon nanofibers (TiO2-Sn@CNFs) via electrospinning and atomic layer deposition to suppress pulverization-induced capacity decay. In pipe-wire TiO2-Sn@CNFs paper, nano-Sn is uniformly dispersed in carbon nanofibers, which not only act as a buffer material to prevent pulverization, but also serve as a conductive matrix. In addition, TiO2 pipe as the protection shell outside of Sn@carbon nanofibers can restrain the volume variation to prevent Sn from aggregation and pulverization during cycling, thus increasing the Coulombic efficiency. The pipe-wire TiO2-Sn@CNFs show excellent electrochemical performance as anodes for both LIBs and NIBs. It exhibits a high and stable capacity of 643 mA h/g at 200 mA/g after 1100 cycles in LIBs and 413 mA h/g at 100 mA/g after 400 cycles in NIBs. These results would shed light on the practical application of Sn-based materials as a high capacity electrode with good cycling stability for next-generation LIBs and NIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...