Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 38(3): 1705-8, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21520883

ABSTRACT

PURPOSE: Easy particle propagation (Epp) is a user code for the EGSnrc code package based on the c+ + class library egspp. A main feature of egspp (and Epp) is the ability to use analytical objects to construct simulation geometries. The authors developed Epp to facilitate the simulation of x-ray imaging geometries, especially in the case of scatter studies. While direct use of egspp requires knowledge of c+ +, Epp requires no programming experience. METHODS: Epp's features include calculation of dose deposited in a voxelized phantom and photon propagation to a user-defined imaging plane. Projection images of primary, single Rayleigh scattered, single Compton scattered, and multiple scattered photons may be generated. Epp input files can be nested, allowing for the construction of complex simulation geometries from more basic components. To demonstrate the imaging features of Epp, the authors simulate 38 keV x rays from a point source propagating through a water cylinder 12 cm in diameter, using both analytical and voxelized representations of the cylinder. The simulation generates projection images of primary and scattered photons at a user-defined imaging plane. The authors also simulate dose scoring in the voxelized version of the phantom in both Epp and DOSXYZnrc and examine the accuracy of Epp using the Kawrakow-Fippel test. RESULTS: The results of the imaging simulations with Epp using voxelized and analytical descriptions of the water cylinder agree within 1%. The results of the Kawrakow-Fippel test suggest good agreement between Epp and DOSXYZnrc. CONCLUSIONS: Epp provides the user with useful features, including the ability to build complex geometries from simpler ones and the ability to generate images of scattered and primary photons. There is no inherent computational time saving arising from Epp, except for those arising from egspp's ability to use analytical representations of simulation geometries. Epp agrees with DOSXYZnrc in dose calculation, since they are both based on the well-validated standard EGSnrc radiation transport physics model.


Subject(s)
Monte Carlo Method , Radiography/methods , Scattering, Radiation , Software , Image Processing, Computer-Assisted
2.
Med Phys ; 37(12): 6317-22, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21302788

ABSTRACT

PURPOSE: It has been shown that coherently scattered x rays can be used to discriminate and identify specific components in a mixture of low atomic weight materials. The authors demonstrated a new method of doing coherently scattered x-ray tomography with a thin sheet of x ray. METHODS: A collimated x-ray fan-beam, a parallel polycapillary collimator, and a phantom consisting of several biocompatible materials of low attenuation-based contrast were used to investigate the feasibility of the method. Because of the particular experimental setup, only the phantom translation perpendicular to the x-ray beam is needed and, thus, there is no need of Radon-type tomographic reconstruction, except for the correction of the attenuation to the primary and scattered x rays, which was performed by using a conventional attenuation-based tomographic image data set. The coherent scatter image contrast changes with momentum transfer among component materials in the specimen were investigated with multiple x-ray sources with narrow bandwidth spectra generated with anode and filter combinations of Cu/Ni (8 keV), Mo/Zr (18 keV), and Ag/Pd (22 keV) and at multiple scatter angles by orienting the detector and polycapillary collimator at different angles to the illuminating x ray. RESULTS: The contrast among different materials changes with the x-ray source energy and the angle at which the image was measured. The coherent scatter profiles obtained from the coherent scatter images are consistent with the published results. CONCLUSIONS: This method can be used to directly generate the three-dimensional coherent scatter images of small animal, biopsies, or other small objects with low atomic weight biological or similar synthetic materials with low attenuation contrast. With equipment optimized, submillimeter spatial resolution may be achieved.


Subject(s)
Imaging, Three-Dimensional/methods , Scattering, Radiation , X-Ray Microtomography/methods , Imaging, Three-Dimensional/instrumentation , X-Ray Microtomography/instrumentation
3.
J Opt Soc Am A Opt Image Sci Vis ; 23(5): 1179-200, 2006 May.
Article in English | MEDLINE | ID: mdl-16642197

ABSTRACT

Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Electron, Transmission/methods , X-Ray Diffraction/methods , Information Storage and Retrieval/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...