Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(48): e202301121, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37300353

ABSTRACT

Lithium-sulfur (Li-S) batteries are a promising energy storage technology due to their tempting high theoretical capacity and energy density. Nevertheless, the wastage of active materials that originates from the shuttling effect of polysulfides still hinders advancement of Li-S batteries. The effective design of cathode materials is extremely pivotal to solve this thorny problem. Herein, surface engineering in covalent organic polymers (COPs) has been performed to investigate the influence of pore wall polarity on the performance of COP-based cathodes used for Li-S batteries. With the assistance of experimental investigation and theoretical calculations, performance improvement by increasing pore surface polarity and a synergy effect of the polarized functionalities, along with nano-confinement effect of the COPs, are disclosed, to which the improved performance of Li-S batteries including outstanding Coulombic efficiency (99.0 %) and extremely low capacity decay (0.08 % over 425 cycles at 1.0 C) is attributed. This work not only enlightens the designable synthesis and applications of covalent polymers as polar sulfur hosts with high utilization of active materials, but also provides a feasible guide for the design of effective cathode materials for future advanced Li-S batteries.

2.
ACS Appl Mater Interfaces ; 12(31): 34990-34998, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32658445

ABSTRACT

Lithium-sulfur (Li-S) batteries have recently become a research hotspot because of their tempting theoretical capacity and energy density. Nevertheless, the notorious shuttle of polysulfides hinders the advancement of Li-S batteries. Herein, a two-dimensional covalent organic framework (COF) with extended π-conjugated units has been designed, synthesized, and used as sulfur recipients with 88.4 wt % in loading. The COF offers an elaborate platform for sufficient Li-S redox reactions with almost theoretical capacity release (1617 mA h g-1 at 0.1 C), satisfactory rate capability, and intensively traps polysulfides for a decent Coulombic efficiency (ca. 98.0%) and extremely low capacity decay (0.077% per cycle after 528 cycles at 0.5 C). The structural factors of the COF on the high-performance batteries are revealed by density functional theory calculations to be the high degrees of conjugation and proper interlayer space. This work not only demonstrates the great potential of COFs as highly efficient sulfur recipients but also provides a viable guidance for further design of COF materials to tackle shuttling issues toward active materials in electrochemical energy storage.

3.
Nat Commun ; 10(1): 4609, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601815

ABSTRACT

Constructing two-dimensional (2D) polymers with complex tessellation patterns via synthetic chemistry makes a significant contribution not only to the understanding of the emergence of complex hierarchical systems in living organisms, but also to the fabrication of advanced hierarchical materials. However, to achieve such tasks is a great challenge. In this communication we report a facile and general approach to tessellate 2D covalent organic frameworks (COFs) by three or four geometric shapes/sizes, which affords 2D COFs bearing three or four different kinds of pores and increases structural complexity in tessellations of 2D polymers to a much higher level. The complex tessellation patterns of the COFs are elucidated by powder X-ray diffraction studies, theoretical simulations and high-resolution TEM.

4.
J Am Chem Soc ; 141(38): 14981-14986, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31492052

ABSTRACT

New linkage chemistry will endow covalent organic frameworks (COFs) with not only structural diversity but also fascinating properties. However, to develop a new type of linkages has been a great challenge. We herein report the first two COFs using aminal as the linkages. These two COFs have been synthesized by condensation of secondary amine and aldehyde. They crystallize in cpi net, which is a new topology for COFs. The aminal linkage is found to favor reservation of photophysical property of the monomers due to its tetrahedral geometry and nonconjugated feature. These aminal-COFs exhibit good thermal stability and high chemical stability under neutral and basic conditions.

5.
Chem Commun (Camb) ; 55(31): 4550-4553, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30924825

ABSTRACT

A tetraphenylethene-based 2D covalent organic framework (COF) has been synthesized. It exhibits a very fast response and high sensitivity to the presence of gaseous HCl by way of distinct changes in fluorescence emission and color, which makes the COF a good chemosensor for spectroscopic and naked-eye detection of gaseous HCl.

6.
J Am Chem Soc ; 139(19): 6736-6743, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28445639

ABSTRACT

Covalent organic frameworks (COFs) are an emerging class of crystalline porous organic materials which are fabricated via reticular chemistry. Their topologic structures can be precisely predicted on the basis of the structures of building blocks. However, constructing COFs with complicated structures has remained a great challenge, due to the limited strategies that can access to the structural complexity of COFs. In this work, we have developed a new approach to produce COFs bearing three different kinds of pores. The design is fulfilled by the combination of vertex-truncation with multiple-linking-site strategy. On the basis of this design, a "V"-shaped building block carrying two aldehyde groups on the end of each branch has been synthesized. Condensation of it with 1,4-diaminobenzene or benzidine leads to the formation of two triple-pore COFs, TP-COF-DAB and TP-COF-BZ, respectively. The topological structures of the triple-pore COFs have been confirmed by PXRD studies, synchrotron small-angle X-ray scattering (SAXS) experiments, theoretical simulations, and pore size distribution analyses. Furthermore, for the first time, an in situ COF-to-COF transformation has also been achieved by heating TP-COF-BZ with 1,4-diaminobenzene under solvothermal condition, which leads to the formation of TP-COF-DAB via in situ replacing the benzidine linkers in TP-COF-BZ with 1,4-diaminobenzene linkers.

SELECTION OF CITATIONS
SEARCH DETAIL
...