Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Brain Mapp ; 44(6): 2607-2619, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36807959

ABSTRACT

Internet gaming disorder (IGD) and tobacco use disorder (TUD) are globally common, non-substance-related disorders and substance-related disorders worldwide, respectively. Recognizing the commonalities between IGD and TUD will deepen understanding of the underlying mechanisms of addictive behavior and excessive online gaming. Using node strength, 141 resting-state data were collected in this study to compute network homogeneity. The participants included participants with IGD (PIGD: n = 34, male = 29, age: 15-25 years), participants with TUD (PTUD: n = 33, male = 33, age: 19-42 years), and matched healthy controls (control-for-IGD: n = 41, male = 38, age: 17-32 years; control-for-TUD: n = 33, age: 21-27 years). PIGD and PTUD exhibited common enhanced node strength between the subcortical and motor networks. Additionally, a common enhanced resting-state functional connectivity (RSFC) was found between the right thalamus and right postcentral gyrus in PIGD and PTUD. Node strength and RSFC were used to distinguish PIGD and PTUD from their respective healthy controls. Interestingly, models trained on PIGD versus controls could classify PTUD versus controls and vice versa, suggesting that these disorders share common neurological patterns. Enhanced connectivity may indicate a greater association between rewards and behaviors, inducing addiction behaviors without flexible and complex regulation. This study discovered that the connectivity between the subcortical and motor networks is a potential biological target for developing addiction treatment in the future.


Subject(s)
Tobacco Use Disorder , Video Games , Humans , Male , Adolescent , Young Adult , Adult , Tobacco Use Disorder/diagnostic imaging , Brain Mapping , Internet Addiction Disorder/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Internet , Brain/diagnostic imaging
2.
BJPsych Open ; 9(2): e31, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36718768

ABSTRACT

BACKGROUND: Research into neural mechanisms underlying cue-induced cigarette craving has attracted considerable attention for its significant role in treatments. However, there is little understanding about the effects of exposure to smoking-related cues on electroencephalogram (EEG) microstates of smokers, which can reflect abnormal brain network activity in several psychiatric disorders. AIMS: To explore whether abnormal brain network activity in smokers on exposure to smoking-related cues would be captured by EEG microstates. METHOD: Forty smokers were exposed to smoking and neutral imagery conditions (cues) during EEG recording. Behavioural data and parameters for microstate topographies associated with the auditory (A), visual (B), salience and memory (C) and dorsal attention networks (D) were compared between conditions. Correlations between microstate parameters and cigarette craving as well as nicotine addiction characteristics were also analysed. RESULTS: The smoking condition elicited a significant increase in the duration of microstate classes B and C and in the duration and contribution of class D compared with the neutral condition. A significant positive correlation between the increased duration of class C (smoking minus neutral) and increased craving ratings was observed, which was fully mediated by increased posterior alpha power. The increased duration and contribution of class D were both positively correlated with years of smoking. CONCLUSIONS: Our results indicate that smokers showed abnormal EEG microstates when exposed to smoking-related cues compared with neutral cues. Importantly, microstate class C (duration) might be a biomarker of cue-induced cigarette craving, and class D (duration and contribution) might reflect the relationship between cue-elicited activation of the dorsal attention network and years of smoking.

3.
Front Neurosci ; 15: 647844, 2021.
Article in English | MEDLINE | ID: mdl-34295217

ABSTRACT

Compared with the traditional neurofeedback paradigm, the cognition-guided neurofeedback brain-computer interface (BCI) is a novel paradigm with significant effect on nicotine addiction. However, the cognition-guided neurofeedback BCI dataset is extremely lacking at present. This paper provides a BCI dataset based on a novel cognition-guided neurofeedback on nicotine addiction. Twenty-eight participants are recruited and involved in two visits of neurofeedback training. This cognition-guided neurofeedback includes two phases: an offline classifier construction and a real-time neurofeedback training. The original electroencephalogram (EEG) raw data of two phases are provided and evaluated in this paper. The event-related potential (ERP) amplitude and channel waveform suggest that our BCI dataset is of good quality and consistency. During neurofeedback training, the participants' smoking cue reactivity patterns have a significant reduction. The mean accuracy of the multivariate pattern analysis (MVPA) classifier can reach approximately 70%. This novel cognition-guided neurofeedback BCI dataset can be used to develop comparisons with other neurofeedback systems and provide a reference for the development of other BCI algorithms and neurofeedback paradigms on addiction.

4.
Sci Rep ; 7(1): 2430, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28546584

ABSTRACT

Cigarette craving is a key contributor of nicotine addiction. Hypnotic aversion suggestions have been used to help smoking cessation and reduce smoking relapse rates but its neural basis is poorly understood. This study investigated the underlying neural basis of hypnosis treatment for nicotine addiction with resting state Electroencephalograph (EEG) coherence as the measure. The sample consisted of 42 male smokers. Cigarette craving was measured by the Tobacco Craving Questionnaire. The 8-minute resting state EEG was recorded in baseline state and after hypnotic induction in the hypnotic state. Then a smoking disgust suggestion was performed. A significant increase in EEG coherence in delta and theta frequency, and significant decrease in alpha and beta frequency, between the baseline and the hypnotic state was found, which may reflect alterations in consciousness after hypnotic induction. More importantly, the delta coherence between the right frontal region and the left posterior region predicted cigarette craving reduction after hypnotic aversion suggestions. This suggests that the functional connectivity between these regions plays an important role in reducing cigarette cravings via hypnotic aversion suggestions. Thus, these brain regions may serve as an important target to treat nicotine addiction, such as stimulating these brain regions via repetitive transcranial magnetic stimulation.


Subject(s)
Brain Waves , Craving , Electroencephalography , Hypnotics and Sedatives , Tobacco Use Disorder , Adult , Data Interpretation, Statistical , Female , Humans , Male , Middle Aged , Tobacco Use Disorder/psychology , Young Adult
5.
PLoS One ; 9(12): e115772, 2014.
Article in English | MEDLINE | ID: mdl-25531112

ABSTRACT

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate cortical excitability. Although the clinical value of tDCS has been advocated, the potential of tDCS in cognitive rehabilitation of face processing deficits is less understood. Face processing has been associated with the occipito-temporal cortex (OT). The present study investigated whether face processing in healthy adults can be modulated by applying tDCS over the OT. Experiment 1 investigated whether tDCS can affect N170, a face-sensitive ERP component, with a face orientation judgment task. The N170 in the right hemisphere was reduced in active stimulation conditions compared with the sham stimulation condition for both upright faces and inverted faces. Experiment 2 further demonstrated that tDCS can modulate the composite face effect, a type of holistic processing that reflects the obligatory attention to all parts of a face. The composite face effect was reduced in active stimulation conditions compared with the sham stimulation condition. Additionally, the current polarity did not modulate the effect of tDCS in the two experiments. The present study demonstrates that N170 can be causally manipulated by stimulating the OT with weak currents. Furthermore, our study provides evidence that obligatory attention to all parts of a face can be affected by the commonly used tDCS parameter setting.


Subject(s)
Face , Occipital Lobe/physiology , Orientation/physiology , Recognition, Psychology/physiology , Repetition Priming/physiology , Temporal Lobe/physiology , Transcranial Direct Current Stimulation , Adolescent , Adult , Attention , Electric Stimulation , Electroencephalography , Female , Functional Laterality , Humans , Male , Psychomotor Performance , Reaction Time , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...