Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Chem ; 10: 974914, 2022.
Article in English | MEDLINE | ID: mdl-36003620

ABSTRACT

A new dysprosium (III) coordination polymer [Dy(Hm-dobdc) (H2O)2]·H2O (Dy-CP), was hydrothermal synthesized based on 4,6-dioxido-1,3-benzenedicarboxylate (H4m-dobdc) ligand containing carboxyl and phenolic hydroxyl groups. The Dy(III) center adopts an octa-coordinated [DyO8] geometry, which can be described as a twisted square antiprism (D 4d symmetry). Neighboring Dy(III) ions are interconnected by deprotonated Hm-dobdc3- ligand to form the two-dimensional infinite layers, which are further linked to generate three-dimensional structure through abundant hydrogen bonds mediated primarily by coordinated and lattice H2O molecules. Magnetic studies demonstrates that Dy-CP shows the field-induced slow relaxation of magnetization and the energy barrier U eff/k B and relaxation time τ 0 are 35.3 K and 1.31 × 10-6 s, respectively. Following the vehicular mechanism, Dy-CP displays proton conductivity with σ equal to 7.77 × 10-8 S cm-1 at 353 K and 30%RH. Moreover, luminescence spectra reveal that H4m-dobdc can sensitize characteristic luminescence of Dy(III) ion. Herein, good magnetism, proton conduction, and luminescence are simultaneously achieved, and thus, Dy-CP is a potential multifunctional coordination polymer material.

2.
PeerJ ; 7: e6122, 2019.
Article in English | MEDLINE | ID: mdl-30627488

ABSTRACT

Genome sequences of marine streptomycetes are valuable for the discovery of useful enzymes and bioactive compounds by genome mining. However, publicly available complete genome sequences of marine streptomycetes are still limited. Here, we present the complete genome sequence of a marine streptomycete Streptomyces sp. S063 CGMCC 14582. Species delineation based on the pairwise digital DNA-DNA hybridization and genome comparison ANI (average nucleotide identity) value showed that Streptomyces sp. S063 CGMCC 14582 possesses a unique genome that is clearly different from all of the other available genomes. Bioactivity tests showed that Streptomyces sp. S063 CGMCC 14582 produces metabolites with anti-complement activities, which are useful for treatment of numerous diseases that arise from inappropriate activation of the human complement system. Analysis of the genome reveals no biosynthetic gene cluster (BGC) which shows even low similarity to that of the known anti-complement agents was detected in the genome, indicating that Streptomyces sp. S063 CGMCC 14582 may produce novel anti-complement agents of microbial origin. Four BGCs which are potentially involved in biosynthesis of non-ribosomal peptides were disrupted, but no decrease of anti-complement activities was observed, suggesting that these four BGCs are not involved in biosynthesis of the anti-complement agents. In addition, LC-MS/MS analysis and subsequent alignment through the Global Natural Products Social Molecular Networking (GNPS) platform led to the detection of novel peptides produced by the strain. Streptomyces sp. S063 CGMCC 14582 grows rapidly and is salt tolerant, which benefits efficient secondary metabolite production via seawater-based fermentation. Our results indicate that Streptomyces sp. S063 has great potential to produce novel bioactive compounds, and also is a good host for heterologous production of useful secondary metabolites for drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL