Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Pac Symp Biocomput ; 29: 53-64, 2024.
Article in English | MEDLINE | ID: mdl-38160269

ABSTRACT

Functional brain networks represent dynamic and complex interactions among anatomical regions of interest (ROIs), providing crucial clinical insights for neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have proven immense success and effectiveness in analyzing structured network data. However, due to the high complexity of data acquisition, resulting in limited training resources of neuroimaging data, GNNs, like all deep learning models, suffer from overfitting. Moreover, their capability to capture useful neural patterns for downstream prediction is also adversely affected. To address such challenge, this study proposes BrainSTEAM, an integrated framework featuring a spatio-temporal module that consists of an EdgeConv GNN model, an autoencoder network, and a Mixup strategy. In particular, the spatio-temporal module aims to dynamically segment the time series signals of the ROI features for each subject into chunked sequences. We leverage each sequence to construct correlation networks, thereby increasing the training data. Additionally, we employ the EdgeConv GNN to capture ROI connectivity structures, an autoencoder for data denoising, and mixup for enhancing model training through linear data augmentation. We evaluate our framework on two real-world neuroimaging datasets, ABIDE for Autism prediction and HCP for gender prediction. Extensive experiments demonstrate the superiority and robustness of BrainSTEAM when compared to a variety of existing models, showcasing the strong potential of our proposed mechanisms in generalizing to other studies for connectome-based fMRI analysis.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Computational Biology , Neuroimaging , Brain/diagnostic imaging
2.
Pac Symp Biocomput ; 29: 214-225, 2024.
Article in English | MEDLINE | ID: mdl-38160281

ABSTRACT

Recent advancements in neuroimaging techniques have sparked a growing interest in understanding the complex interactions between anatomical regions of interest (ROIs), forming into brain networks that play a crucial role in various clinical tasks, such as neural pattern discovery and disorder diagnosis. In recent years, graph neural networks (GNNs) have emerged as powerful tools for analyzing network data. However, due to the complexity of data acquisition and regulatory restrictions, brain network studies remain limited in scale and are often confined to local institutions. These limitations greatly challenge GNN models to capture useful neural circuitry patterns and deliver robust downstream performance. As a distributed machine learning paradigm, federated learning (FL) provides a promising solution in addressing resource limitation and privacy concerns, by enabling collaborative learning across local institutions (i.e., clients) without data sharing. While the data heterogeneity issues have been extensively studied in recent FL literature, cross-institutional brain network analysis presents unique data heterogeneity challenges, that is, the inconsistent ROI parcellation systems and varying predictive neural circuitry patterns across local neuroimaging studies. To this end, we propose FedBrain, a GNN-based personalized FL framework that takes into account the unique properties of brain network data. Specifically, we present a federated atlas mapping mechanism to overcome the feature and structure heterogeneity of brain networks arising from different ROI atlas systems, and a clustering approach guided by clinical prior knowledge to address varying predictive neural circuitry patterns regarding different patient groups, neuroimaging modalities and clinical outcomes. Compared to existing FL strategies, our approach demonstrates superior and more consistent performance, showcasing its strong potential and generalizability in cross-institutional connectome-based brain imaging analysis. The implementation is available here.


Subject(s)
Connectome , Humans , Computational Biology , Brain/diagnostic imaging , Neural Networks, Computer , Neuroimaging
3.
ArXiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37332568

ABSTRACT

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-MIXUP, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency. The interpolation process in R-MIXUP leverages the log-Euclidean distance metrics from the Riemannian manifold, effectively addressing the swelling effect and arbitrarily incorrect label issues of vanilla Mixup. We demonstrate the effectiveness of R-MIXUP with five real-world biological network datasets on both regression and classification tasks. Besides, we derive a commonly ignored necessary condition for identifying the SPD matrices of biological networks and empirically study its influence on the model performance. The code implementation can be found in Appendix E.

4.
IEEE Trans Med Imaging ; 42(2): 493-506, 2023 02.
Article in English | MEDLINE | ID: mdl-36318557

ABSTRACT

Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.


Subject(s)
Benchmarking , Connectome , Humans , Brain/diagnostic imaging , Neural Networks, Computer , Neuroimaging
5.
Article in English | MEDLINE | ID: mdl-38868456

ABSTRACT

Functional magnetic resonance imaging (fMRI) has become one of the most common imaging modalities for brain function analysis. Recently, graph neural networks (GNN) have been adopted for fMRI analysis with superior performance. Unfortunately, traditional functional brain networks are mainly constructed based on similarities among region of interests (ROIs), which are noisy and can lead to inferior results for GNN models. To better adapt GNNs for fMRI analysis, we propose DABNet, a Deep DAG learning framework based on Brain Networks for fMRI analysis. DABNet adopts a brain network generator module, which harnesses the DAG learning approach to transform the raw time-series into effective brain connectivities. Experiments on two fMRI datasets demonstrate the efficacy of DABNet. The generated brain networks also highlight the prediction-related brain regions and thus provide interpretations for predictions.

6.
Proc AAAI Conf Artif Intell ; 37(9): 10611-10619, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-38333625

ABSTRACT

Training deep neural networks (DNNs) with limited supervision has been a popular research topic as it can significantly alleviate the annotation burden. Self-training has been successfully applied in semi-supervised learning tasks, but one drawback of self-training is that it is vulnerable to the label noise from incorrect pseudo labels. Inspired by the fact that samples with similar labels tend to share similar representations, we develop a neighborhood-based sample selection approach to tackle the issue of noisy pseudo labels. We further stabilize self-training via aggregating the predictions from different rounds during sample selection. Experiments on eight tasks show that our proposed method outperforms the strongest self-training baseline with 1.83% and 2.51% performance gain for text and graph datasets on average. Our further analysis demonstrates that our proposed data selection strategy reduces the noise of pseudo labels by 36.8% and saves 57.3% of the time when compared with the best baseline. Our code and appendices will be uploaded to https://github.com/ritaranx/NeST.

7.
KDD ; 2023: 1073-1085, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38343707

ABSTRACT

Biological networks are commonly used in biomedical and healthcare domains to effectively model the structure of complex biological systems with interactions linking biological entities. However, due to their characteristics of high dimensionality and low sample size, directly applying deep learning models on biological networks usually faces severe overfitting. In this work, we propose R-Mixup, a Mixup-based data augmentation technique that suits the symmetric positive definite (SPD) property of adjacency matrices from biological networks with optimized training efficiency. The interpolation process in R-Mixup leverages the log-Euclidean distance metrics from the Riemannian manifold, effectively addressing the swelling effect and arbitrarily incorrect label issues of vanilla Mixup. We demonstrate the effectiveness of R-Mixup with five real-world biological network datasets on both regression and classification tasks. Besides, we derive a commonly ignored necessary condition for identifying the SPD matrices of biological networks and empirically study its influence on the model performance. The code implementation can be found in Appendix E.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 272-276, 2022 07.
Article in English | MEDLINE | ID: mdl-36085703

ABSTRACT

Multimodal brain networks characterize complex connectivities among different brain regions from both structural and functional aspects and provide a new means for mental disease analysis. Recently, Graph Neural Networks (GNNs) have become a de facto model for analyzing graph-structured data. However, how to employ GNNs to extract effective representations from brain networks in multiple modalities remains rarely explored. Moreover, as brain networks provide no initial node features, how to design informative node attributes and leverage edge weights for GNNs to learn is left unsolved. To this end, we develop a novel multiview GNN for multimodal brain networks. In particular, we treat each modality as a view for brain networks and employ contrastive learning for multimodal fusion. Then, we propose a GNN model which takes advantage of the message passing scheme by propagating messages based on degree statistics and brain region connectivities. Extensive experiments on two real-world disease datasets (HIV and Bipolar) demonstrate the effectiveness of our proposed method over state-of-the-art baselines.


Subject(s)
Mental Disorders , Neural Networks, Computer , Brain/diagnostic imaging , Humans , Learning , Mental Disorders/diagnosis
9.
Proc Mach Learn Res ; 172: 618-637, 2022 Jul.
Article in English | MEDLINE | ID: mdl-37377881

ABSTRACT

Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.

SELECTION OF CITATIONS
SEARCH DETAIL
...