Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38946149

ABSTRACT

BACKGROUND: A chronic condition that significantly reduces a child's quality of life is allergic rhinitis (AR). The environment and allergens that the body is regularly exposed to can cause inflammatory and immunological reactions, which can change the expression of certain genes Epigenetic changes are closely linked to the onset and severity of allergy disorders according to mounting amounts of data. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS: Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. RESULTS: Recent findings indicate that various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. CONCLUSION: This article demonstrates the significance and progress of ncRNAs in children's AR. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore.

2.
Discov Nano ; 19(1): 58, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532183

ABSTRACT

This study presents a technique for processing transparent glass and resin substrates using a low-cost laser marker to create a micro-nano-structured surface with exceptional anti-fog properties. The approach involved depositing an aluminum (Al) film on the transparent substrates as an absorbing layer, followed by rapid laser marker ablation. This ablation process effectively removed the majority of the Al film, resulting in the formation of hierarchical hillock-hollow micro-structures and the dispersion of Al-based nano-particles throughout the surface. The resulting structure on resin glasses demonstrated anti-fog performance even after 629 days storage in the laboratory, which marked the longest antifog record. It exhibited impressive antifog property without visible degradation for the first 9 months, which though degraded substantially afterwards. Furthermore, the micro-nano structure played a key role in reducing the contact angle of the surface. The contact angle experienced a significant reduction from a value of 64° for the control resin to 6.9° for the treated resin, while it was reduced from 44° for the control glass to 0° for the treated glass, indicating superhydrophilicity. This 0° superhydrophilic state persisted for a period of 25 days.

3.
J Colloid Interface Sci ; 665: 518-525, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547633

ABSTRACT

Construction of heterogeneous interfaces with dual active components to synergistically promote both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an effective strategy for facilitating electrochemical water splitting, but the appropriate active component regulation via simple synthesis procedures is still challenging. Herein, the Co and Co2Mo3O8 active components are screened to construct effective heterogeneous interfaces and successfully integrated on Ni foam by thermal reduction of cobalt molybdate precursor. And this bifunctional electrode (Co/Co2Mo3O8/NF) required overpotentials of only 164 and 360 mV to drive the 100 mA cm-2 for HER and OER in alkaline media, respectively. Theoretical calculations showed that the electron transfer occurred from Co to Co2Mo3O8 at the interface, then the formed interfacial cobalt atoms with deficient electron were beneficial for water activation, and reduced energy barrier of water dissociation under the synergistic effect of Co2Mo3O8. Notably, the alkaline electrolyzer based on symmetric Co/Co2Mo3O8/NF electrodes generated 100 mA cm-2 at a voltage of only 1.75 V, surpassing commercially available precious-metal Pt/RuO2-based catalysts.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570519

ABSTRACT

By employing the laser marker fast ablation technique in water, combined with the innovative inclusion of sonication, we successfully developed Ti-based nanoparticles with improved characteristics. sonication increased the nanoparticle concentration in the colloid, reduced nanoparticle size, and also narrowed size distribution. Our findings also provide valuable insights into the influence of laser parameters, such as wavelength and fluence, on nanoparticle properties. UV laser led to small nanoparticles compared with 1064 nm laser. Additionally, high laser fluence appeared to increase the ablated particle size until a plateau fluence at 28.5 J/cm2; at 38 J/cm2, the particle size decreased. Notably, all synthesized particles exhibited a regular spherical shape, as confirmed by energy dispersive X-ray spectroscopy (EDS) mapping, which also indicated that the majority of Ti-based particles were in an oxidized state. Additionally, the presence of rutile TiO2 in the particles was further confirmed by X-ray diffraction (XRD) analysis. Ceria doping Titania nanoparticles was also attempted.

5.
Small ; 19(25): e2207924, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929266

ABSTRACT

The sluggish reaction kinetics and severe shutting behaviors of sulfur cathodes are the major roadblocks to realizing the practical application of lithium-sulfur (Li-S) batteries and need to be solved through designing/constructing rational sulfur hosts. Herein, an effective alternative material of Fe3 O4- x /FeP in-situ embedded in N-doped carbon-tube (Fe3 O4- x /FeP/NCT) is proposed. In this fabricated heterostructure, NCT skeleton works as a sulfur host provides physical barrier for lithium polysulfides (LiPSs), while Fe3 O4- x /FeP heterostructure with abundant oxygen vacancies provides double active centers to simultaneously accelerate e- /Li+ diffusion/transport kinetics and catalysis for LiPSs. Through the respective advantages, Fe3 O4- x /FeP/NCT exhibits synergy enhancement effect for restraining sulfur dissolution and enhancing its conversion kinetics. Furthermore, the promoted ion diffusion kinetics, enhanced electrical conductivity, and increased active sites of Fe3 O4- x /FeP/NCT are enabled by oxygen vacancies as well as the heterogeneous interfacial contact, which is clearly confirmed by experimental and first-principles calculations. By virtue of these superiorities, the constructed cathode shows excellent long-term cycling stability and a high-rate capability up to 10 C. Specially, a high areal capacity of 7.2 mAh cm-2 is also achieved, holding great promise for utilization in advanced Li-S batteries in the future.

6.
Article in English | MEDLINE | ID: mdl-36523422

ABSTRACT

Constipation commonly occurs during childhood, and more than 95% of cases are classified as functional constipation. If not effectively treated, 20% of patients with childhood constipation can continue to exhibit symptoms into adulthood, which seriously affects their mental health and quality of life. The main feature of acupuncture or acupoint stimulation, a special branch of traditional Chinese medicine, is the selection of different acupoints for different diseases, and many worthy guidelines have been established for matching acupoints. The back-shu and front-mu point combination adheres to an important acupoint compatibility law that has been used since its proposal 2,500 years ago but has not yet been verified by the modern evidence-based experiments. This study focused on the back-shu and front-mu point combination using the Dachangshu (BL25) and Tianshu (ST25) points as examples to explore possible research methods for network acupoint-based stimulation based on existing evidence and to elucidate the mechanisms induced by BL25 and ST25 in the treatment of functional constipation in children (FCC). The study found that BL25 and ST25 have 20 common targets, namely, AQP8, DRD2, VIP, TAC1, IL6R, TNF, FOS, KIT, CHAT, HTR3A, GAS8, SOD3, TRPV1, MPO, CALCA, IL1B, P2RX7, NPY2R, IL10RA, and TPH1, and these targets may provide a strategy for the combined usage of BL25 and ST25. In addition, BL25 and ST25 can affect FCC treatment through inflammation-relatedTh17-cell differentiation, the NF-kappa B signaling pathway, and the Toll-like receptor signaling pathway. Adipocytokines or leptin may also comprise the mechanism through which BL25 and ST25 regulate FCC. In addition, BL25 and ST25 regulate FCC through 13 core targets, namely, NFKBIA, RELA, TNF, IKBKB, IRAK1, TLR4, MYD88, TNFRSF1A, IL1R1, TLR2, IL1B, TRAF6, and TNFRSF1B. In short, this study provides new ideas and methods for studying the mechanism of acupuncture points.

7.
RSC Adv ; 12(44): 28586-28598, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36320494

ABSTRACT

Sulfides cannot be completely removed using oxidation due to the production of sulfate. In this work, a reduced graphene oxide (RGO)/Fe3O4 hybrid material was synthesized via a simple in situ chemical method for sulfide removal. The adsorption capacity of RGO/Fe3O4 was evaluated by sulfide removal from aqueous solution, and different experimental parameters including contact time, solution pH, adsorbent dosage, ion strength and temperature were investigated. The equilibrium data were in accordance with the Langmuir linear isotherm with a maximum uptake capacity of 173 mg g-1. The adsorption of sulfide by the RGO/Fe3O4 hybrid material can be attributed to the synergistic effect of both chemical and physical adsorption according to kinetic, adsorption isotherm and thermodynamic studies. The RGO/Fe3O4 material with oxygenated functional groups could convert sulfides to stable elemental sulfur and sulfone organics. The external magnetic field could easily separate the magnetic RGO/Fe3O4 adsorbent from the liquid. This research provides a novel strategy for the green and low-cost treatment of sulfide-containing wastewater by the RGO/Fe3O4 hybrid material.

8.
Front Neurol ; 12: 747745, 2021.
Article in English | MEDLINE | ID: mdl-34867732

ABSTRACT

Background: Neonatal seizures are a common neurological emergency in newborns. Phenobarbital (PB) is the first-line antiepileptic drug (AED). However, PB has some side effects, such as hypotension and respiratory depression, and it can accelerate neuronal apoptosis in the immature brain. Levetiracetam (LEV), a new antiepileptic drug, has been used as a second-line drug for the treatment of neonatal seizures. Compared with PB, LEV has many advantages, including a low incidence of side effects and better neurodevelopmental outcomes. However, there are only a few systematic reviews of LEV for the treatment of neonatal seizures. Objective: To evaluate the efficacy and safety of LEV for neonatal seizures and to compare the efficacy, side effects, and neurological outcomes between LEV and PB in the treatment of neonatal seizures. Methods: The keywords LEV, PB, and neonatal seizure were searched in the MEDLINE, Cochrane Library, Web of Science, EMBASE, clinicaltrials.gov, and China National Knowledge Internet (CNKI) databases with a last update in July 2021 to collect high-quality studies. We collected studies studying the efficacy or safety of LEV and PB in the treatment of neonatal seizures applying strict inclusion and exclusion criteria. The data were extracted and outcome measures, including efficacy, side effect rate, neurological score, and mortality rate, were analyzed with RevMan 5.3 software. Results: Ten articles were finally included in the meta-analysis. The meta-analysis showed that there was no difference in efficacy between LEV and PB in the treatment of neonatal seizures. Compared with PB, the incidence of side effects of LEV was lower. The incidence of hypotension and respiratory depression in the LEV group was significantly lower than that in the PB group. In terms of long-term neurodevelopmental outcomes, there was no significant difference in the Bayley Scales of Infant Development (BSID) scores between LEV and PB. Conclusion: PB is still the first-line AED recommended by the WHO for the treatment of neonatal seizures. The new AEDs LEV may not have better efficacy than PB. At the same time, LEV is associated with better neurodevelopment outcomes and a lower risk of adverse effects. In addition, continuous EEG monitoring should be used to diagnose neonatal seizures to evaluate the severity of the seizures, remission, and drug efficacy. Systematic Review Registration: PROSPERO, identifier: CRD42021279029.

9.
Pediatr Neonatol ; 62(6): 598-605, 2021 11.
Article in English | MEDLINE | ID: mdl-34389261

ABSTRACT

BACKGROUND: Anti-epileptic drugs have different effects on neonatal seizures, and new agents have been widely used in recent years. Meanwhile, significant differences still exist in the treatment for neonatal seizures, whether in choice of drug or in duration of treatment. And with the increase in options for treatment, the best choice of second-line treatment has not been recommended. METHODS: The MEDLINE, the Cochrane Library, Web of Science, Embase and clinicaltrials.gov databases were searched (January 1, 1960 to October 20, 2020). Randomized controlled trials (RCTs) or observational investigations studying anti-epileptic drugs for neonatal seizures were selected. And then we conducted a network meta-analysis and examined comparative efficacy of the first-line and second-line anti-epileptic drugs for neonatal seizures. RESULTS: Data were extracted from 11 included studies by 2 independent investigators. Random effects models were used to estimate odds ratios (ORs). We performed direct meta-analyses with a random effects model and network meta-analyses for first-line and second-line drugs. Five published RCTs and 6 observational investigations with 1333 patients and 6 interventions contributed to the analysis. CONCLUSION: We recommend phenobarbital as the first-line drug for neonatal seizures. In addition, there is a tendency for levetiracetam to be an effective second-line treatment for neonatal seizures after failure of first-line drugs.


Subject(s)
Anticonvulsants , Pharmaceutical Preparations , Anticonvulsants/therapeutic use , Carbamazepine , Humans , Infant, Newborn , Network Meta-Analysis , Seizures/drug therapy
10.
ACS Appl Mater Interfaces ; 13(29): 34468-34476, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34260197

ABSTRACT

Prussian blue analogues (PBAs) have been considered as one kind of the most promising cathode materials for Zn-ion batteries (ZIBs) due to their low cost, high performance, high safety, and high abundance. However, owing to the low conductivity and single electron reaction, it is a great challenge to obtain a PBA cathode material with high reversible capacity, high rate capability, and good temperature adaptability. Here, a cathode material, K1.14(VO)3.33[Fe(CN)6]2·6.8H2O (KVHCF), with a multielectron reaction and double conductive carbon framework (DCCF) is designed and synthesized by combining structure and morphology engineering. With the multielectron reaction and high electronic conductivity simultaneously, the KVHCF@DCCF cathode material delivers a high specific capacity (180 mAh·g-1 @ 400 mA·g-1) and the best rate performance (116 mAh·g-1 @ 8000 mA·g-1) of the reported PBAs. Moreover, KVHCF@DCCF presents a high specific capacity of 132 mAh·g-1 @ 400 mA·g-1 at 0 °C. Even at -10 °C, it still delivers specific capacities of 127 mAh·g-1 @ 40 mA·g-1 and 80 mAh·g-1 @ 400 mA·g-1 with a retention of 86% after 700 cycles. In situ X-ray diffraction (XRD) and ex situ X-ray photoelectron spectroscopy (XPS) are carried out to investigate the charge-discharge electrochemical reaction mechanism.

11.
Article in English | MEDLINE | ID: mdl-34306143

ABSTRACT

BACKGROUND: Pneumonia is a serious global health problem. In traditional Chinese medicine, acupuncture or moxibustion is used to directly stimulate select acupoints on the surface of the human body and produce physical stimulation to further stimulate regulatory functions in the body, strengthening bodily resistance, eliminating disease, and adjusting the viscera. However, this Chinese medicine knowledge does not include the specific mechanisms of action or targets of acupoints. Therefore, an in-depth research is needed. METHODS: An acupoint-element database was constructed, and the target elements of the Feishu point were screened. The UniProt-Swiss-Prot sublibrary was used to obtain correct gene name information. The National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database and GEO2R were used to analyze differentially expressed genes in pneumonia. The STRING database was used to analyze interactions, construct a network of the Feishu point efficacy system in pneumonia, and elucidate the mechanisms of action. RESULTS: The Feishu point comprises 34 elements in total. The protein interaction analysis has 38 nodes and 115 edges. The Feishu point efficacy system-pneumonia system network shows that cytokine signaling in the immune system, signaling by interleukins (ILs), IL-4 and IL-13 signaling, and the immune system may be related to immunity and inflammation. The Feishu point efficacy system regulating pneumonia showed that FCER2, IL4R, FASLG, TGFB1, IL6R, STAT6, IL1B, CASP3, IL5RA, IL2RB, MYD88, SQSTM1, IL12RB1, IFNGR1, ADAM17, and CDH1 are the main targets. CONCLUSION: From the perspective of systematic acupuncture and moxibustion, the Feishu point regulates cytokine signaling in the immune system, signaling by ILs, IL-4 and IL-13 signaling, and the immune system by targeting FCER2, IL4R, FASLG, TGFB1, IL6R, STAT6, IL1B, CASP3, IL5RA, IL2RB, MYD88, SQSTM1, IL12RB1, IFNGR1, ADAM17, and CDH1, thereby regulating pneumonia.

12.
Nanoscale ; 12(46): 23799-23808, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33237095

ABSTRACT

As a typical electrode material in Faraday supercapacitors (FSs), Ni(OH)2 has some intrinsic issues such as low electrical conductivity and structural instability, resulting in its low performance. In view of these issues, we design a multifunctional nanostructure, rigid nanosheet-interlaced structure of Ni-Co LDH/graphene to improve the electrical conductivity and structural stability of Ni(OH)2. Under the high shear applied by a high shear mixer (HSM) and the regulation of polyvinylpyrrolidone (PVP), the designed structure is realized. Benefitting from the well-designed structure and improved electrical conductivity of the graphene sheet-high homogenization, Ni-Co LDH/graphene presents the expected performance. It exhibits a high specific capacity of 1020 C g-1 at a low current density of 2.7 A g-1 and excellent high rate performance (637.5 C g-1 at 62.5 A g-1). The asymmetrical supercapacitors (ASCs) assembled with the composite as the positive material show high energy density (86.5 W h kg-1 at a power density of 695.7 W kg-1). Due to the improved structural stability, the ASCs also exhibit high cycling stability (a capacity retention of 97.8% after 10 000 charge-discharge cycles).

13.
Nanoscale ; 12(43): 22330-22339, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33146646

ABSTRACT

The microstructure of electrode materials and its synergism with current collectors have been a research focus in the area of Faraday supercapacitors (FSs), while the microstructure of current collectors has been neglected in most cases. To eliminate the electrochemical bottleneck of FSs, the comprehensive consideration on electrodes should simultaneously include both the microstructures of materials and current collectors, and their synergism. In this work, a dual nanostructure of NiCo2S4/nickel foam is built to achieve an electrode with structure-synergistical contribution from materials and current collectors. The as-built electrode presents an ultra-high rate capacity (1223.8 C g-1 at 2.5 A g-1; 53.40% capacity retention at an ultra-high current density of 148.5 A g-1) and excellent cycling stability (94.56% capacity retention after 10 000 charge-discharge cycles). The as-assembled asymmetrical supercapacitors show both high energy and power densities (76.7 W h kg-1 at 425.7 W kg-1; 41.9 W h kg-1 at 10 643.3 W kg-1). These results demonstrate that the dual nanostructure of the electrode is valuable for achieving high performance supercapacitors.

14.
Front Pediatr ; 8: 542, 2020.
Article in English | MEDLINE | ID: mdl-33014936

ABSTRACT

Importance: COVID-19 has become a worldwide pandemic. Many countries have reported cases of infection in children and newborns, and there is a trend of significantly increasing infections among these populations. Therefore, it is important to provide advice and guidance for the prevention and control of COVID-19 in children. Observations: Children are as susceptible to SARS-CoV-2 infection as adults. The manifestations in children are atypical, and children are much less likely to have critical cases. If children are infected, they may play an important role in the spread of SARS-CoV-2 because their symptoms are less obvious and less likely to be detected. To prevent COVID-19 from spreading among children, efforts to prevent, and control the infection should be increased by controlling the source of infection, blocking the route of transmission and protecting the susceptible population. Conclusions and Relevance: The early identification of the COVID-19 in children and the protection of families are important measures to prevent the continued spread of SARS-CoV-2.

15.
Nanoscale ; 11(44): 21532-21541, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31687731

ABSTRACT

Lithium-sulfur (Li-S) batteries with high theoretical energy densities of ∼2600 W h kg-1 have been recognized as a promising energy storage device. However, the practical application of Li-S batteries is still limited by the cycle stability and rate capability, which is highly relied on the well-designed cathode material. Inspired by the unique structure of frogspawn in Nature, a hollow Fe3C@N-C with frogspawn-like architecture was successfully constructed as a highly efficient sulfur host in this paper. Derived from a Prussian blue self-template, Fe3C@N-C possesses a metal-like Fe3C spawn core and the high conductivity of an N-doped carbon shell. This unique structure enables a large surface area, fast e-/Li+ transport, as well as a large hollow space for the volumetric expansion of the sulfur cathode. Moreover, with the N-doped carbon shell and the polar Fe3C core, the trapping and catalytic conversion of intermediate polysulfides are also facilitated. The strongly coupled interaction of polar Fe3C and polysulfides is confirmed by both theoretical calculations and electrochemical performance. Specifically, the Fe3C@N-C/S electrode presents a high capacity of 1351 mA h g-1 at 0.1C with the Fe3C@N-C as an integrated sulfur host. In particular, the rate capability and cycling stability of the Fe3C@N-C/S electrode is outstanding. It displays a high capacity of 792 mA h g-1 at 5C and a low capacity decay rate of 0.08% per cycle at 0.5C after 400 cycles. This work opens a convenient and economical avenue to design a frogspawn-like hollow metal carbide/carbon as an efficient sulfur host for advanced Li-S batteries.

16.
Environ Sci Pollut Res Int ; 25(32): 32791-32801, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30251040

ABSTRACT

Much work has been conducted on the topic of forward osmosis (FO), but only a few studies have focused on mitigating external concentration polarization (ECP). This study introduced a simple structure, the corrugated wall channel, to the design of FO module, to induce vortex, and then mitigate ECP. In this study, the corrugated wall channel module (CWCM) was tested under given conditions, with a traditional flat membrane module (FMM) as control. CWCM could mitigate ECP and then enhance water flux. When deionized water was taken as feed solution (FS) and 2-M NaCl solution as draw solution (DS), the water flux enhancement was 16.49 and 18.51% in FO mode (active layer facing FS) and PRO mode (active layer facing DS), respectively. When 0.5-M NaCl solution was taken as FS, the corresponding values were 15.92 and 17.13%, respectively. Computational fluid dynamics (CFD) analysis showed that the CWCM could induce vortex, promote the mixing of the solution in the module, and further contribute to the increase of water flux. The specific shape of CWCM affected its performance on mitigating ECP. Also, the more tortuous CWCM exhibited higher water flux. In addition, CWCM could lessen membrane fouling.


Subject(s)
Water Purification/methods , Membranes, Artificial , Osmosis , Sodium Chloride , Water
17.
Environ Sci Pollut Res Int ; 25(6): 5752-5761, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29230651

ABSTRACT

Reverse draw solute diffusion not only reduces the water flux in forward osmosis (FO), but also contaminates the feed solution and eventually increases the regeneration cost of draw solution. In the present study, a new polyelectrolyte was synthesized as FO draw solute to address this problem. Acrylic acid and sodium p-styrenesulfonate monomers with hydrophilic group were used to fabricate carboxylate polyelectrolyte through free radical polymerization reaction. Results demonstrated that the osmotic pressure of carboxylate polyelectrolyte solution had a good linear relationship with concentration, and the viscosity of 0.18 g/mL solution was less than 5.4 cP. Active layer facing draw solution produced the initial water flux of 11.77 LMH and active layer facing feed solution yielded the initial water flux of 6.68 LMH when the concentration of draw solution was 0.18 g/mL. The reverse solute flux was around 1 gMH, and specific reverse solute flux of 0.18 g/mL carboxylate polyelectrolyte draw solution was 0.11 g/L which was much lower than that of traditional inorganic salts. Finally, diluted draw solution was regenerated via ultrafiltration, and the recovery efficiency of 94.78% was achieved. So, carboxylate polyelectrolyte can be suitable draw solute for FO.


Subject(s)
Carboxylic Acids/chemistry , Membranes, Artificial , Models, Theoretical , Osmosis , Polyelectrolytes/chemistry , Water Purification/methods , Hydrophobic and Hydrophilic Interactions , Osmotic Pressure , Solutions , Viscosity , Wastewater/chemistry
18.
Recent Pat Nanotechnol ; 8(1): 18-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24635206

ABSTRACT

Because of the high surface energy, nanoparticles show strong tendency to agglomeration or aggregation during preparations and applications, which thus greatly deteriorate their performance. Investigations have proven that redispersible nanoparticles can exhibit enhanced performances or be used in new technical applications as compared with the non-redispersible nanoparticles. The redispersity or solubility of particles is defined as their ability for re-forming colloid-like suspension after they are redispersed in solvent. The redispersity/solubility of particles can be obtained by establishing compatibility between particles and solvent through various techniques. In this review, we will give summary descriptions about related methods and their mechanism for the fabrication of redispersible or soluble particles. Also, outlook for the development and applications in this area will be given.

19.
Nanotechnology ; 24(34): 345602, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-23900070

ABSTRACT

In this work, SnO2 quantum dots with high crystallinity were synthesized on a large scale under mild reaction conditions via an epoxide precipitation route. The SnO intermediate, which was produced in the reactions between epoxide and [Sn(H2O)6](2+), was converted to SnO2 quantum dots by the oxidation of H2O2. It is believed that the protonation and the following ring opening of epoxide promoted the hydrolysis and condensation of [Sn(H2O)6](2+) to form the intermediate. The obtained quantum dots had a maximum specific capacitance of 204.4 F g(-1) at a scan rate of 5 mV s(-1) in 1 mol l(-1) KOH aqueous solution. The electrochemical measurements proved that this high specific capacitance of SnO2 resulted from the Faradaic reactions between SnO2 and the electrolyte. This demonstrates for the first time that SnO2 can be used as a pseudocapacitive electrode material.

20.
J Colloid Interface Sci ; 398: 7-12, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23489603

ABSTRACT

Highly water-soluble 2nm anatase nanoparticles were synthesized under mild conditions via a simple, scalable and surfactant-free sol-gel method. The covalent bonding of butoxy groups with surface Ti ions prevents mutual contact of surface hydroxyl groups between particles, leading to the weak inter-linkage of particles in powder. As a result, the obtained powder can be easily dissolved in water just by gentle shaking of container because of the formation of hydrogen bonds between water molecules and surface hydroxyl groups of particles. Originated from the water soluble property of TiO2 nanoparticles, polishable TiO2-SiO2 composite monoliths were prepared for application in UV-shielding. The obtained monolith shows high transparency in visible range and excellent absorption efficiency in UV band.

SELECTION OF CITATIONS
SEARCH DETAIL
...