Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 42(22): 8585-90, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19068852

ABSTRACT

A new concept of desulfurization was developed by designing a series of electrochemical reactions to drive an SO2 absorption-and-conversion process in aqueous solution, hence the SO2 in gas was eventually converted to a valuable chemical of NaHSO4. A model experiment of chemically substantiating this concept includes two steps: (I) absorption of SO2 gas by aqueous solution and oxidation of the absorbed SO2 to SO4(2-) by air and (II) transformation of the SO4(2-) to NaHSO4. The experiment demonstrated that in Step I, the cathodic reduction of 02 from ambient air scavenged the H+ released due to the SO2 absorption and its further oxidation, which thereby were accelerated. Meanwhile H2O2 as a cathodic product further enhanced the SO2 oxidation. In Step II, the anodic oxidation of H2O supplied H+ and allowed the NaHSO4 formation through balances of electrons and mass. Thereafter, a pH range of 5.0-6.0 for the SO2 oxidation was optimized, and an electrochemically driven process for the SO2 conversion to NaHSO4 was proposed. Sustainability evaluation indicated that this concept complies with the principles of green chemistry and potentially enables the SO2 conversion from flue gas to NaHSO4 as a value-added process.


Subject(s)
Electrochemistry/methods , Sulfates/chemistry , Water/chemistry , Animals , Conservation of Natural Resources , Fossil Fuels , Humans , Oxidation-Reduction , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...