Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 5(7): 3509-3518, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35793521

ABSTRACT

Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C6-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.


Subject(s)
Polyesters , Textiles , Actin Cytoskeleton , Caprolactam/analogs & derivatives , Humans , Polymers , Porosity , Positron-Emission Tomography , Protective Clothing
2.
Polymers (Basel) ; 14(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35566835

ABSTRACT

Polylactic acid (PLA) micro-nanofiber fabrics with a large specific surface area and excellent biodegradability are commonly used in oil/water separation; however, challenges remain due to their poor mechanical properties. Herein, a thermoplastic polylactic acid/propylene-based elastomer (PLA/PBE) polymer was prepared by blending PLA with PBE. Then, PLA/PBE micro-nanofiber fabrics were successfully prepared using a melt-blown process. The results show that the PLA/PBE micro-nanofiber fabric has a three-dimensional porous structure, improving the thermal stability and fluidity of the PLA/PBE blended polymers. The PLA/PBE micro-nanofiber fabric demonstrated a significantly reduced average fiber diameter and an enhanced breaking strength. Moreover, the water contact angle of the prepared samples is 134°, which suggests a hydrophobic capacity. The oil absorption rate of the fabric can reach 10.34, demonstrating excellent oil/water separation performance. The successful preparation of PLA/PBE micro-nanofiber fabrics using our new method paves the way for the large-scale production of promising candidates for high-efficacy oil/water separation applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...