Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(2): 2052-2062, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32865683

ABSTRACT

Lanthanum-modified bentonite (LMB, Phoslock®) is a well-known capping agent for phosphorus immobilization in sediments. Herein, LMB was used to immobilize As in sediments. Batch capacity experiments for arsenate and arsenite adsorption were carried out to obtain adsorption isotherms and kinetics using the Langmuir and Freundlich model calculations. High-resolution (HR) diffusive gradients in thin films (DGT) were applied to monitor the changes of weakly bound As fraction near sediment-water interface (SWI). The interaction of As(III) and As(V) with LMB was influenced by pH and initial mineral composition. As(V) was more obviously adsorbed than As(III) at pH 4 to 9, with mean adsorption of 3.89 mg g-1 and 0.04 mg g-1, respectively, while at pH > 9 As(III) was preferentially adsorbed. After LMB amendment for 2 months, the maximum As removal efficiency in the pore and overlying water reached 84.5% and 99.3%, respectively. The capping agent remained stable in the top sediments, while the maximum DGT labile As content decreased to 0.89 and 0.51 µg L-1 in dosage-and time-treatments. The As concentration inflection point moved down to a deeper layer. As species changed from labile exchangeable-As to Fe-oxide-bound and residual As. The proportion of mobile As finally decreased to 10.5% of the total As in the upper 20-mm layer sediment. The increase of Kd (the distribution coefficient at SWI) and k1 (adsorption rate constant) and the decrease of Tc (response time of (de)sorption) in the DGT-induced fluxes model (DIFS) indicated the time-dependent impediment of As release from the sediment due to LMB immobilization.


Subject(s)
Arsenic , Water Pollutants, Chemical , Bentonite , Geologic Sediments , Lakes , Lanthanum , Phosphorus , Water Pollutants, Chemical/analysis
2.
Sci Total Environ ; 616-617: 927-936, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29111246

ABSTRACT

The effectiveness of sediment dredging for the control of internal phosphorus (P) loading, was investigated seasonally in the eutrophic Lake Taihu. The high-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) techniques were used to measure the concentrations of soluble Fe(II) and soluble reactive P (SRP) as well as DGT-labile Fe/P in the non-dredging and post-dredging sediments. The P resupply kinetics from sediment solids were interpreted using DGT Induced Fluxes in Sediments (DIFS) modeling. The results showed no obvious improvement in water and sediment quality after dredging for 6years, due to their geographical proximity (a line distance of approximately 9km). However, dredging significantly decreased the concentrations of soluble Fe(II)/SRP and DGT-labile Fe/P in sediments, with effects varying at different depths below the sediment-water interface; More pronounced effects appeared in January and April. The diffusive flux of pore water SRP from sediments decreased from 0.746, 4.08 and 0.353mg/m2/d to 0.174, 1.58 and 0.048mg/m2/d in April, July and January, respectively. DIFS modeling indicated that the P retention capability of sediment solids was improved in April in post-dredging site. Positive correlations between pore water soluble Fe(II) and SRP as well as between DGT-labile Fe and P, reflect the key role of Fe redox cycling in regulating dredging effectiveness. This effect is especially important in winter and spring, while in summer and autumn, the decomposition of algae promoted the release of P from sediments and suppressed dredging effectiveness. Overall, the high-resolution HR-Peeper and DGT measurements indicated a successful control of internal P loading by dredging, and the post-dredging effectiveness was suppressed by algal bloom.

3.
Article in English | MEDLINE | ID: mdl-26496159

ABSTRACT

Aquatic products are important sources of animal proteins in human diet, especially in developing countries. As such, the safety of aquatic products is of primary concern. In this study, a standard method is used to detect malachite green (MG) and chloramphenicol (CAP) and to analyse the contents of these banned chemicals in turtle, mandarin fish and grass carp sampled from the region surrounding Dongting Lake area in Hunan, China. Results showed that 10.6% of the samples were MG-positive, most of them turtles. CAP was found in 8.3% of the samples, mostly in mandarin fish. These data indicated that these banned substances are still used in the surveyed area. Hence, adequate strategies must be implemented by the local government to control these banned substances.


Subject(s)
Chloramphenicol/chemistry , Meat/analysis , Rosaniline Dyes/chemistry , Water Pollutants, Chemical/chemistry , Animals , Anti-Bacterial Agents/chemistry , China , Fishes , Food Analysis , Turtles
SELECTION OF CITATIONS
SEARCH DETAIL
...