Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 306: 135501, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35779678

ABSTRACT

Developing novel bifunctional materials to high efficiently degrade organic pollutants and eliminate hexavalent chromium (Cr (VI)) is significantly desired in the wastewater treatment field. The porous boron nitride (p-BN) was fabricated by a two-stage calcination strategy and was innovatively employed to support zero-valent iron (ZVI), achieving the bifunctional material (p-BN@ZVI) to degrade carbamazepine (CBZ) and eliminate Cr (VI). p-BN@ZVI could degrade more than 98% CBZ in 6 min with the high apparent first-order constant (kobs) of 0.536 min-1, almost 5 times higher than that of the ZVI/PMS system and outperformed most previous reported ZVI supported catalysts, which was mainly ascribed to the fact that the introduction of p-BN with high surface area (793.97 m2/g) improved the dispersion of ZVI and exposed more active sites. Quenching tests coupled with electron paramagnetic resonance (EPR) suggested that •OH was the major reactive oxygen species with a contribution of 71.6%. Notably, the p-BN@ZVI/PMS system expressed low activation energy of 8.23 kJ/mol and reached a 65.69% TOC degradation in 20 min even at 0 °C. p-BN@ZVI possessed remarkable storage stability and could still degrade 92.3% CBZ despite three-month storage. More interestingly, p-BN@ZVI was capable to eliminate 98.1% of 50 mg/L Cr (VI) within 5 min through adsorption and reduction, where nearly 80% Cr (VI) was transformed to Cr (III), and exhibited the maximum Cr (VI) elimination capacity of 349 mg/g. This study provides new insights into the efficient organic contaminants degradation and Cr (VI) elimination in the treatment of wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Boron Compounds , Chromium/analysis , Iron/chemistry , Porosity , Water Pollutants, Chemical/chemistry
2.
Environ Technol ; 43(18): 2796-2808, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33719927

ABSTRACT

Developing high-performance adsorbent for hexavalent chromium (Cr(VI)) elimination presents an enticing prospect in environmental remediation. Herein, three-dimensional flowerlike nanospheres composed of molybdenum disulphide and polypyrrole (MoS2@PPy) were successfully prepared via a one-pot hydrothermal and subsequent carbothermal reduction process for the removal of Cr(VI). The effects of pH, adsorbent dosage, co-existing ions, initial Cr(VI) concentration and temperature were investigated systematically by batch experiments. Benefiting from the incorporation of MoS2, the obtained MoS2@PPy composites showed a dramatic increase of specific surface area (149.82 m2·g-1) and adsorption capacity (230.97 mg·g-1) when compared with the pure PPy nanoparticles. Based on the thermodynamics study and X-ray photoelectron spectroscopy analyses, the removal process of Cr(VI) was proved to be exothermic and spontaneous, and accessible under-coordinated Mo(IV) and pyrrolic N groups coupled with redox reactions were conducive to the efficient removal of Cr(VI). Attractively, the MoS2@PPy acted as the electron donor could also activate peroxymonosulphate for the efficient degradation of organic contaminants. These results suggested that the MoS2@PPy was promising in Cr(VI) elimination and other kinds of organic pollutants removal in wastewater.


Subject(s)
Nanocomposites , Water Pollutants, Chemical , Adsorption , Chromium/chemistry , Disulfides , Hydrogen-Ion Concentration , Kinetics , Molybdenum/analysis , Nanocomposites/chemistry , Polymers/chemistry , Pyrroles/analysis , Pyrroles/chemistry , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...