Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930848

ABSTRACT

The photoelectrochemical (PEC) conversion of organic small molecules offers a dual benefit of synthesizing value-added chemicals and concurrently producing hydrogen (H2). Ethylene glycol, with its dual hydroxyl groups, stands out as a versatile organic substrate capable of yielding various C1 and C2 chemicals. In this study, we demonstrate that pH modulation markedly enhances the photocurrent of BiVO4 photoanodes, thus facilitating the efficient oxidation of ethylene glycol while simultaneously generating H2. Our findings reveal that in a pH = 1 ethylene glycol solution, the photocurrent density at 1.23 V vs. RHE can attain an impressive 7.1 mA cm-2, significantly surpassing the outputs in neutral and highly alkaline environments. The increase in photocurrent is attributed to the augmented adsorption of ethylene glycol on BiVO4 under acidic conditions, which in turn elevates the activity of the oxidation reaction, culminating in the maximal production of formic acid. This investigation sheds light on the pivotal role of electrolyte pH in the PEC oxidation process and underscores the potential of the PEC strategy for biomass valorization into value-added products alongside H2 fuel generation.

2.
J Am Chem Soc ; 146(10): 6846-6855, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38424010

ABSTRACT

This investigation probes the intricate interplay of catalyst dynamics and reaction pathways during the oxygen evolution reaction (OER), highlighting the significance of atomic-level and local ligand structure insights in crafting highly active electrocatalysts. Leveraging a tailored ion exchange reaction followed by electrochemical dynamic reconstruction, we engineered a novel catalytic structure featuring single Ir atoms anchored to NiOOH (Ir1@NiOOH). This novel approach involved the strategic replacement of Fe with Ir, facilitating the transition of selenide precatalysts into active (oxy)hydroxides. This elemental substitution promoted an upward shift in the O 2p band and intensified the metal-oxygen covalency, thereby altering the OER mechanism toward enhanced activity. The shift from a single-metal site mechanism (SMSM) in NiOOH to a dual-metal-site mechanism (DMSM) in Ir1@NiOOH was substantiated by in situ differential electrochemical mass spectrometry (DEMS) and supported by theoretical insights. Remarkably, the Ir1@NiOOH electrode exhibited exceptional electrocatalytic performance, achieving overpotentials as low as 142 and 308 mV at current densities of 10 and 1000 mA cm-2, respectively, setting a new benchmark for the electrocatalysis of OER.

3.
Nano Lett ; 24(3): 958-965, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38207219

ABSTRACT

Photoelectrochemical (PEC) water splitting in acidic media holds promise as an efficient approach to renewable hydrogen production. However, the development of highly active and stable photoanodes under acidic conditions remains a significant challenge. Herein, we demonstrate the remarkable water oxidation performance of Ru single atom decorated hematite (Fe2O3) photoanodes, resulting in a high photocurrent of 1.42 mA cm-2 at 1.23 VRHE under acidic conditions. Comprehensive experimental and theoretical investigations shed light on the mechanisms underlying the superior activity of the Ru-decorated photoanode. The presence of single Ru atoms enhances the separation and transfer of photogenerated carriers, facilitating efficient water oxidation kinetics on the Fe2O3 surface. This is achieved by creating additional energy levels within the Fe2O3 bandgap and optimizing the free adsorption energy of intermediates. These modifications effectively lower the energy barrier of the rate-determining step for water splitting, thereby promoting efficient PEC hydrogen production.

4.
Environ Technol ; 42(3): 377-387, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31180796

ABSTRACT

Tetracycline hydrochloride as an environmental pollutant is biologically toxic and highly difficult to degrade. To solve this problem, an efficient catalyst IO-TiO2-CdS composite with honeycomb-like three-dimensional (3D) inverse opal TiO2 (IO-TiO2) and cadmium sulphide (CdS) was synthesized and applied in the degradation of tetracycline hydrochloride in this paper. More than 99% of the tetracycline hydrochloride (30 mg/L) can be degraded by IO-TiO2-CdS (30 mg) within 20 min under visible light irradiation. Surprisingly, the naphthol rings can be opened and degraded to alkane with a minimum molecular weight of 60, which is the smallest fragment among all publications. The three-dimensional ordered macroporous (3DOM) structure of IO-TiO2 improves the utilization of light via the slow photon effect. Meanwhile, the addition of CdS enhances the degradation efficiency of tetracycline by broadening the range of absorption spectrum and improving the separation of charge carrier on the catalyst. In addition to the degradation of tetracycline hydrochloride, IO-TiO2-CdS also shows a good degradation efficiency of Rhodamine B (RhB). This work provides a promising approach to construct visible light response photocatalysts with non-noble metal for efficient degradation of wastewater pollutants.


Subject(s)
Nanocomposites , Tetracycline , Cadmium Compounds , Light , Sulfides , Titanium , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...