Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 83(9): 1502-1518.e10, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37086726

ABSTRACT

2',3'-cGAMP, produced by the DNA sensor cGAS, activates stimulator of interferon genes (STING) and triggers immune response during infection. Tremendous effort has been placed on unraveling the mechanism of STING activation. However, little is known about STING inhibition. Here, we found that apo-STING exhibits a bilayer with head-to-head as well as side-by-side packing, mediated by its ligand-binding domain (LBD). This type of assembly holds two endoplasmic reticulum (ER) membranes together not only to prevent STING ER exit but also to eliminate the recruitment of TBK1, representing the autoinhibited state of STING. Additionally, we obtained the filament structure of the STING/2',3'-cGAMP complex, which adopts a bent monolayer assembly mediated by LBD and transmembrane domain (TMD). The active, curved STING polymer could deform ER membrane to support its ER exit and anterograde transportation. Our data together provide a panoramic vision regarding STING autoinhibition and activation, which adds substantially to current understanding of the cGAS-STING pathway.


Subject(s)
Protein Serine-Threonine Kinases , Signal Transduction , Protein Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA , Immunity, Innate
2.
Immunity ; 55(8): 1501-1514.e3, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35777362

ABSTRACT

SARS-CoV-2 Omicron variant has presented significant challenges to current antibodies and vaccines. Herein, we systematically compared the efficacy of 50 human monoclonal antibodies (mAbs), covering the seven identified epitope classes of the SARS-CoV-2 RBD, against Omicron sub-variants BA.1, BA.1.1, BA.2, and BA.3. Binding and pseudovirus-based neutralizing assays revealed that 37 of the 50 mAbs lost neutralizing activities, whereas the others displayed variably decreased activities against the four Omicron sub-variants. BA.2 was found to be more sensitive to RBD-5 antibodies than the other sub-variants. Furthermore, a quaternary complex structure of BA.1 RBD with three mAbs showing different neutralizing potencies against Omicron provided a basis for understanding the immune evasion of Omicron sub-variants and revealed the lack of G446S mutation accounting for the sensitivity of BA.2 to RBD-5 mAbs. Our results may guide the application of the available mAbs and facilitate the development of universal therapeutic antibodies and vaccines against COVID-19.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Monoclonal , Antibodies, Viral , COVID-19 Vaccines , Humans , Membrane Glycoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35022217

ABSTRACT

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Endosomes/metabolism , SARS-CoV-2 , Sorting Nexins/chemistry , COVID-19/virology , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Crystallography, X-Ray , Cytosol/metabolism , Endocytosis , Gene Expression Profiling , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Lentivirus , Lysosomes/metabolism , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Domains , Sorting Nexins/metabolism , Virus Internalization
4.
Acta Biomater ; 122: 199-210, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33453408

ABSTRACT

Perinatal-related tissues, such as the placenta, umbilical cord, and amniotic membrane, are generally discarded after delivery and are increasingly attracting attention as alternative sources for decellularized extracellular matrix (dECM) isolation. Recent studies indicate that glycosaminoglycans (GAGs) in the dECM play key roles during tissue regeneration. However, the dECM is organ specific, and the glycosaminoglycanomics of dECMs from perinatal tissues and the regulatory function of GAGs have been poorly investigated. In this study, we explored the glycosaminoglycanomics of dECMs from the placenta, umbilical cord and amniotic membrane. We hypothesized that the therapeutic effects of dECMs are related to the detailed composition of GAGs. Hydrogels of dECM derived from perinatal tissues were generated, and glycosaminoglycanomics analysis was employed to identify the cues that promote tissue repair and regeneration in a murine cutaneous wound-healing model. We utilized highly sensitive liquid chromatography-tandem mass spectrometry for glycosaminoglycanomics analysis. Our results revealed that placenta-derived dECM (PL-dECM) hydrogel has higher contents of chondroitin sulfate (CS) and heparan sulfate (HS). In addition, molecular imaging showed that the PL-dECM hydrogel exerted the best anti-inflammatory and proangiogenic effects in the skin wound healing model. Further in vitro analyses demonstrated that CS with 6-O-sulfo group (CS-6S) has an anti-inflammatory effect, while HS with 6-O-sulfo group (HS-6S) plays a crucial role in angiogenesis. In conclusion, this study highlights the critical roles of GAGs in perinatal tissue-derived dECMs by promoting angiogenesis and inhibiting inflammation and indicates that it is feasible to utilize 6-sulfated GAG-enriched placental dECM hydrogel as an attractive candidate for tissue engineering and drug delivery.


Subject(s)
Extracellular Matrix , Glycosaminoglycans , Animals , Female , Mice , Placenta , Pregnancy , Wound Healing
5.
Theranostics ; 9(23): 6976-6990, 2019.
Article in English | MEDLINE | ID: mdl-31660081

ABSTRACT

Background: Embryonic stem cells (ES) have a great potential for cell-based therapies in a regenerative medicine. However, the ethical and safety issues limit its clinical application. ES-derived extracellular vesicles (ES-EVs) have been reported suppress cellular senescence. Mesenchymal stem cells (MSCs) are widely used for clinical cell therapy. In this study, we investigated the beneficial effects of ES-EVs on aging MSCs to further enhancing their therapeutic effects. Methods:In vitro, we explored the rejuvenating effects of ES-EVs on senescent MSCs by senescence-associated ß-gal (SA-ß-gal) staining, immunostaining, and DNA damage foci analysis. The therapeutic effect of senescent MSC pre-treated with ES-EVs was also evaluated by using mouse cutaneous wound model. Results: We found that ES-EVs significantly rejuvenated the senescent MSCs in vitro and improve the therapeutic effects of MSCs in a mouse cutaneous wound model. In addition, we also identified that the IGF1/PI3K/AKT pathway mediated the antisenescence effects of ES-EVs on MSCs. Conclusions: Our results suggested that ES cells derived-extracellular vesicles possess the antisenescence properties, which significantly rejuvenate the senescent MSCs and enhance the therapeutic effects of MSCs. This strategy might emerge as a novel therapeutic strategy for MSCs clinical application.


Subject(s)
Embryonic Stem Cells/chemistry , Extracellular Vesicles/chemistry , Mesenchymal Stem Cell Transplantation , Wounds and Injuries/therapy , Animals , Cell- and Tissue-Based Therapy , Cellular Senescence , Disease Models, Animal , Embryonic Stem Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Phosphatidylinositol 3-Kinases/metabolism , Wounds and Injuries/metabolism , Wounds and Injuries/physiopathology
6.
Future Med Chem ; 11(14): 1777-1790, 2019 07.
Article in English | MEDLINE | ID: mdl-31288586

ABSTRACT

Stem cell therapy is a promising alternative approach to the treatment of a number of incurable degenerative diseases. However, low cell retention and survival after transplantation limit the therapeutic efficacy of stem cells for clinical translational applications. The utilization of biomaterials has been progressively successful in controlling the fate of transplanted cells by imitating the cellular microenvironment for optimal tissue repair and regeneration. This review mainly focuses on the engineered microenvironments with synthetic biomaterials in modification of stem cell behaviors. Moreover, the possible advancements in translational therapy by using biomaterials with stem cells are prospected and the challenges of the current restriction in clinical applications are highlighted.


Subject(s)
Biocompatible Materials/chemistry , Regenerative Medicine , Stem Cells , Animals , Cell Engineering , Humans
7.
ACS Nano ; 13(3): 3522-3533, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30844245

ABSTRACT

Extracellular vesicles (EVs) attract much attention in liver pathology because they regulate cell-cell communication and many pathophysiological events by transferring their cargos. Monitoring and understanding the in vivo fate and therapeutic capacity of these EVs is critical for the development and optimization of EV-based diagnosis and therapy. Herein, we demonstrate the use of an aggregation-induced emission luminogen, DPA-SCP, for the real-time tracking of EVs derived from human placenta-derived mesenchymal stem cells (MSCs) and their therapeutic effects in a mouse acute liver injury (ALI) model. In vitro, DPA-SCP does not alter the inherent characteristics of MSC-derived EVs and shows extremely low toxicity. Moreover, DPA-SCP exhibited superior labeling efficiency and tracking capability to the most popular commercial EV trackers, PKH26 and DiI. In vivo, DPA-SCP precisely and quantitatively tracked the behaviors of EVs for 7 days in the mouse ALI model without influencing their regenerative capacity and therapeutic efficacy. The therapeutic effects of EVs may attribute to their ability for reducing inflammatory cell infiltration, enhancing cell survival and antiapoptotic effects. In conclusion, DPA-SCP with an AIE signature serves as a favorable and safe tracker for in vivo real-time imaging of EVs in liver regeneration.


Subject(s)
Biocompatible Materials/chemistry , Extracellular Vesicles/chemistry , Fluorescent Dyes/chemistry , Liver Regeneration , Optical Imaging , Animals , Biocompatible Materials/administration & dosage , Cells, Cultured , Extracellular Vesicles/transplantation , Female , Fluorescent Dyes/administration & dosage , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred Strains , Molecular Structure , Particle Size , Surface Properties , Time Factors
8.
J Cell Biochem ; 120(4): 4794-4799, 2019 04.
Article in English | MEDLINE | ID: mdl-30417435

ABSTRACT

Embryonic development is precisely regulated by a network of signal pathways and specific genes. Dppa3 (also known as Pgc7 or Stella) plays an important role in early embryonic development during the cleavage stage as a maternal effect gene. Dppa3 expresses in many species, and its homologous gene in human and rat genomes is located at the same chromosomal regions and have the same exon-intron structure. However, unlike mouse embryonic stem (ES) cells, in which the Dppa3 promoter maintains hypomethylation that allows a high transcription level, the DPPA3 promoter region in human ES cells is methylated, much like that of mouse epiblast stem cell. Dppa3 is essential for early embryogenesis and pluripotency maintenance; however, the precise mechanism and downstream passage remains unknown. In this review, we will summarize some important functions of Dppa3 in early embryogenesis and pluripotency maintenance of mouse ES cells.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Animals , Chromosomal Proteins, Non-Histone/genetics , DNA Methylation , Embryonic Development/physiology , Gene Expression Regulation, Developmental , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...