Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.529
Filter
1.
Eur Radiol ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724768

ABSTRACT

OBJECTIVES: Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer's axillary ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer. METHODS: Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep learning features, selecting quantitative features through various methods. Two machine learning models based on random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We compared the fusion model's performance against sonographer's diagnosis from pre-NAC and post-NAC axillary ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection. RESULTS: In the validation cohort, the fusion model outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-NAC models (AUC: 0.899 vs. 0.853, p = 0.014), as well as the sonographer's diagnosis of ALN status on pre-NAC and post-NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer's diagnostic ability, increasing accuracy from 71.9% to 79.2%. CONCLUSION: The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer. Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery. CLINICAL RELEVANCE STATEMENT: Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can accurately predict axillary lymph node metastasis and assist sonographer's axillary diagnosis. KEY POINTS: Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound. Our AI model outperformed sonographer's visual diagnosis on axillary ultrasound. Our deep learning radiomics model can improve sonographers' diagnosis and might assist in surgical decision-making.

2.
J Hazard Mater ; 474: 134729, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38805811

ABSTRACT

Climate change and human activities escalate the frequency and intensity of wildfires, threatening amphibian habitats and survival; yet, research on these impacts remains limited. Wildfire ash alters water quality, introduces contaminants, and may disrupt microbial communities, impacting gut and skin microbiota; however, the effects on gut and skin microbiota remain unclear. Rana dybowskii were exposed to five concentrations (0 g L-1, 1.25 g L-1, 2.5 g L-1, 5 g L-1, and 10 g L-1) of aqueous extracts of wildfire ashes (AEAs) for 30 days to assess AEAs' metal content, survival, and microbiota diversity via Illumina sequencing. Our results showed that the major elements in ash were Ca > K > Mg > Al > Fe > Na > Mn, while in AEA they were K > Ca > Na > Mg > As > Al > Cu. A significant decrease in amphibian survival rates with increased AEA concentration was shown. The beta diversity analysis revealed distinct shifts in microbiota composition. Notably, bacterial genera associated with potential health risks showed increased abundance in skin microbiota, emphasising the potential for ash exposure to affect amphibian health. Functional prediction analyses revealed significant shifts in metabolic pathways related to health and disease, indicating that wildfire ash exposure may influence amphibian health through changes in microbial functions. This study highlights the urgent need for strategies to mitigate wildfire ash impacts on amphibians, as it significantly alters microbiota and affects their survival and health.

3.
J Vasc Access ; : 11297298241251507, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38800939

ABSTRACT

AIM: The use of central venous catheters as hemodialysis vascular access is a major contributor to high bloodstream infection rate. In our dialysis unit in Shenzhen Guangdong Province China, we have developed and used our own dialysis catheter care protocol since May 2013 with good results. In this study, we would like to share our experience with the other units. METHODS: We have undertaken a 5-year retrospective analysis to determine our tunneled dialysis catheter-related blood stream infection rate by adding the number of infections divided by total number of catheter days × 1000. The results were compared with another study carried out in Henan Province China. Demographic data were summarized using descriptive statistics. Continuous and categorical variables were compared using t-test and χ2 test respectively. RESULTS: Between 2017 and 2021, a total of 216 tunneled dialysis catheters were managed by following our own dialysis access pathway and catheter care protocol. The tunneled dialysis catheter-related bloodstream infection rate was 0.0229 per 1000 catheter days in the 5-year period. CONCLUSION: Comparing with other published studies in China, our unit has achieved a very low rate of tunneled dialysis catheter-related bloodstream infection which has been sustained over time. This paper explores how our protocol and implementation might have contributed to the results.

4.
Int J Biol Macromol ; : 131949, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.

6.
Cell Death Dis ; 15(5): 307, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693104

ABSTRACT

The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.


Subject(s)
Extracellular Matrix , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Extracellular Matrix/metabolism , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals
7.
Environ Pollut ; 355: 124197, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782163

ABSTRACT

The presence and accumulation of both, plastics and antibiotics in soils may lead to the colonization, selection, and propagation of soil bacteria with certain metabolic traits, e.g., antibiotic resistance, in the plastisphere. However, the impact of plastic-antibiotic tandem on the soil ecosystem functioning, particularly on microbial function and metabolism remains currently unexplored. Herein, we investigated the competence of soil bacteria to colonize plastics and degrade 13C-labeled sulfamethoxazole (SMX). Using single-cell imaging, isotope tracers, soil respiration and SMX mineralization bulk measurements we show that microbial colonization of polyethylene (PE) and polystyrene (PS) surfaces takes place within the first 30 days of incubation. Morphologically diverse microorganisms were colonizing both plastic types, with a slight preference for PE substrate. CARD-FISH bacterial cell counts on PE and PS surfaces formed under SMX amendment ranged from 5.36 × 103 to 2.06 × 104, and 2.06 × 103 to 3.43 × 103 hybridized cells mm-2, respectively. Nano-scale Secondary Ion Mass Spectrometry measurements show that 13C enrichment was highest at 130 days with values up to 1.29 atom%, similar to those of the 13CO2 pool (up to 1.26 atom%, or 22.55 ‰). Independent Mann-Whitney U test showed a significant difference between the control plastisphere samples incubated without SMX and those in 13C-SMX incubations (P < 0.001). Our results provide direct evidence demonstrating, at single-cell level, the capacity of bacterial colonizers of plastics to assimilate 13C-SMX from contaminated soils. These findings expand our knowledge on the role of soil-seeded plastisphere microbiota in the ecological functioning of soils impacted by anthropogenic stressors.

8.
Clin Transl Med ; 14(5): e1705, 2024 May.
Article in English | MEDLINE | ID: mdl-38797935

ABSTRACT

Ribosomal RNA (rRNA) modifications, essential components of ribosome structure and function, significantly impact cellular proteomics and cancer biology. These chemical modifications transcend structural roles, critically shaping ribosome functionality and influencing cellular protein profiles. In this review, the mechanisms by which rRNA modifications regulate both rRNA functions and broader cellular physiological processes are critically discussed. Importantly, by altering the translational output, rRNA modifications can shift the cellular equilibrium towards oncogenesis, thus playing a key role in cancer development and progression. Moreover, a special focus is placed on the functions of mitochondrial rRNA modifications and their aberrant expression in cancer, an area with profound implications yet largely uncharted. Dysregulation in these modifications can lead to metabolic dysfunction and apoptosis resistance, hallmark traits of cancer cells. Furthermore, the current challenges and future perspectives in targeting rRNA modifications are highlighted as a therapeutic approach for cancer treatment. In conclusion, rRNA modifications represent a frontier in cancer research, offering novel insights and therapeutic possibilities. Understanding and harnessing these modifications can pave the way for breakthroughs in cancer treatment, potentially transforming the approach to combating this complex disease.


Subject(s)
Neoplasms , RNA, Ribosomal , Ribosomes , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Ribosomes/metabolism , Ribosomes/genetics , RNA Processing, Post-Transcriptional/genetics
9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 481-485, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802908

ABSTRACT

OBJECTIVES: To investigate the differences in clinical characteristics among children on prolonged mechanical ventilation (PMV) due to different primary diseases. METHODS: A retrospective analysis was performed on the clinical data of 59 pediatric patients requiring PMV from July 2017 to September 2022. According to the primary disease, they were divided into respiratory disease (RD) group, central nervous system (CNS) group, neuromuscular disease (NMD) group, and other disease group. The four groups were compared in terms of general information, treatment, and outcome. RESULTS: There were significant differences among the four groups in age, body weight, Pediatric Logistic Organ Dysfunction-2 (PELOD-2) score, Pediatric Risk of Mortality III (PRISM Ⅲ) score, analgesic and sedative treatment, nutrition supply, rehabilitation treatment, tracheotomy, successful ventilator weaning, and outcomes (P<0.05). Compared with the RD group, the CNS group and the other disease group had a significantly higher age and a significantly higher proportion of children receiving rehabilitation treatment, and the CNS group had a significantly higher proportion of children receiving tracheotomy (P<0.008). Compared with the other disease group, the CNS group and the NMD group had significantly lower PELOD-2 and PRISM III scores, and the CNS group had a significantly higher proportion of children with successful ventilator weaning and a significantly higher proportion of children who were improved and discharged (P<0.008). CONCLUSIONS: There are differences in clinical characteristics among children receiving PMV due to different etiologies. Most children in the RD group have a younger age, and children in the CNS group have a relatively good prognosis.


Subject(s)
Neuromuscular Diseases , Respiration, Artificial , Humans , Male , Female , Retrospective Studies , Child, Preschool , Infant , Neuromuscular Diseases/therapy , Neuromuscular Diseases/etiology , Child , Central Nervous System Diseases/etiology , Central Nervous System Diseases/therapy , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/etiology
10.
Int J Ophthalmol ; 17(3): 537-544, 2024.
Article in English | MEDLINE | ID: mdl-38721498

ABSTRACT

AIM: To identify the differential methylation sites (DMS) and their according genes associated with diabetic retinopathy (DR) development in type 1 diabetes (T1DM) children. METHODS: This study consists of two surveys. A total of 40 T1DM children was included in the first survey. Because no participant has DR, retina thinning was used as a surrogate indicator for DR. The lowest 25% participants with the thinnest macular retinal thickness were included into the case group, and the others were controls. The DNA methylation status was assessed by the Illumina methylation 850K array BeadChip assay, and compared between the case and control groups. Four DMS with a potential role in diabetes were identified. The second survey included 27 T1DM children, among which four had DR. The methylation patterns of the four DMS identified by 850K were compared between participants with and without DR by pyrosequencing. RESULTS: In the first survey, the 850K array revealed 751 sites significantly and differentially methylated in the case group comparing with the controls (|Δß|>0.1 and Adj.P<0.05), and 328 of these were identified with a significance of Adj.P<0.01. Among these, 319 CpG sites were hypermethylated and 432 were hypomethylated in the case group relative to the controls. Pyrosequencing revealed that the transcription elongation regulator 1 like (TCERG1L, cg07684215) gene was hypermethylated in the four T1DM children with DR (P=0.018), which was consistent with the result from the first survey. The methylation status of the other three DMS (cg26389052, cg25192647, and cg05413694) showed no difference (all P>0.05) between participants with and without DR. CONCLUSION: The hypermethylation of the TCERG1L gene is a risk factor for DR development in Chinese children with T1DM.

11.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38738611

ABSTRACT

We perform detailed potential energy surface explorations of BeM(CO)3- (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt) using both single-reference and multireference-based methods. The present results at the CASPT2(12,12)/def2-QZVPD//M06-D3/def2-TZVPPD level reveal that the global minimum of BeM(CO)3- (M = Co, Rh, Ir) and BePt(CO)3 is a C3v symmetric structure with an 1A1 electronic state, where Be is located in a terminal position bonded to M along the center axis. For other cases, the C3v symmetric structure is a low-lying local minimum. Although the present complexes are isoelectronic with the recently reported BFe(CO)3- complex having a B-Fe quadruple bond, radial orbital-energy slope (ROS) analysis reveals that the highest occupied molecular orbital (HOMO) in the title complexes is slightly antibonding in nature, which bars a quadruple bonding assignment. Similar weak antibonding nature of HOMO in the previously reported BeM(CO)4 (M = Ru, Os) complexes is also noted in ROS analysis. The bonding analysis through energy decomposition analysis in combination with the natural orbital for chemical valence shows that the bonding between Be and M(CO)3q (q = -1 for M = Co, Rh, Ir and q = 0 for M = Ni, Pd, Pt) can be best described as Be in the ground state (1S) interacting with M(CO)30/- via dative bonds. The Be(spσ) → M(CO)3q σ-donation and the complementary Be(spσ) ← M(CO)3q σ-back donation make the overall σ bond, which is accompanied by two weak Be(pπ) ← M(CO)3q π-bonds. These complexes represent triply bonded terminal beryllium in an unusual zero oxidation state.

12.
J Am Heart Assoc ; 13(10): e034145, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761086

ABSTRACT

BACKGROUND: This study aims to investigate the temporal and spatial patterns of structural brain injury related to deep medullary veins (DMVs) damage. METHODS AND RESULTS: This is a longitudinal analysis of the population-based Shunyi cohort study. Baseline DMVs numbers were identified on susceptibility-weighted imaging. We assessed vertex-wise cortex maps and diffusion maps at both baseline and follow-up using FSL software and the longitudinal FreeSurfer analysis suite. We performed statistical analysis of global measurements and voxel/vertex-wise analysis to explore the relationship between DMVs number and brain structural measurements. A total of 977 participants were included in the baseline, of whom 544 completed the follow-up magnetic resonance imaging (age 54.97±7.83 years, 32% men, mean interval 5.56±0.47 years). A lower number of DMVs was associated with a faster disruption of white matter microstructural integrity, presented by increased mean diffusivity and radial diffusion (ß=0.0001 and SE=0.0001 for both, P=0.04 and 0.03, respectively), in extensive deep white matter (threshold-free cluster enhancement P<0.05, adjusted for age and sex). Of particular interest, we found a bidirectional trend association between DMVs number and change in brain volumes. Specifically, participants with mild DMVs disruption showed greater cortical enlargement, whereas those with severe disruption exhibited more significant brain atrophy, primarily involving clusters in the frontal and parietal lobes (multiple comparison corrected P<0.05, adjusted for age, sex, and total intracranial volume). CONCLUSIONS: Our findings posed the dynamic pattern of brain parenchymal lesions related to DMVs injury, shedding light on the interactions and chronological roles of various pathological mechanisms.


Subject(s)
Cerebral Veins , Humans , Male , Female , Middle Aged , Cerebral Veins/diagnostic imaging , Cerebral Veins/pathology , Longitudinal Studies , China/epidemiology , White Matter/diagnostic imaging , White Matter/pathology , Adult , Aged
13.
Chemistry ; : e202400714, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622057

ABSTRACT

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

14.
Environ Sci Technol ; 58(16): 7087-7098, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651173

ABSTRACT

Aerobic anoxygenic phototrophic bacteria (AAPB) contribute profoundly to the global carbon cycle. However, most AAPB in marine environments are uncultured and at low abundance, hampering the recognition of their functions and molecular mechanisms. In this study, we developed a new culture-independent method to identify and sort AAPB using single-cell Raman/fluorescence spectroscopy. Characteristic Raman and fluorescent bands specific to bacteriochlorophyll a (Bchl a) in AAPB were determined by comparing multiple known AAPB with non-AAPB isolates. Using these spectroscopic biomarkers, AAPB in coastal seawater, pelagic seawater, and hydrothermal sediment samples were screened, sorted, and sequenced. 16S rRNA gene analysis and functional gene annotations of sorted cells revealed novel AAPB members and functional genes, including one species belonging to the genus Sphingomonas, two genera affiliated to classes Betaproteobacteria and Gammaproteobacteria, and function genes bchCDIX, pucC2, and pufL related to Bchl a biosynthesis and photosynthetic reaction center assembly. Metagenome-assembled genomes (MAGs) of sorted cells from pelagic seawater and deep-sea hydrothermal sediment belonged to Erythrobacter sanguineus that was considered as an AAPB and genus Sphingomonas, respectively. Moreover, multiple photosynthesis-related genes were annotated in both MAGs, and comparative genomic analysis revealed several exclusive genes involved in amino acid and inorganic ion metabolism and transport. This study employed a new single-cell spectroscopy method to detect AAPB, not only broadening the taxonomic and genetic contents of AAPB in marine environments but also revealing their genetic mechanisms at the single-genomic level.


Subject(s)
Metagenomics , Seawater , Metagenomics/methods , Seawater/microbiology , RNA, Ribosomal, 16S/genetics , Spectrum Analysis, Raman , Phylogeny , Single-Cell Analysis
15.
Chemphyschem ; : e202300816, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563655

ABSTRACT

The introduction of transition-metal doping has engendered a remarkable array of unprecedented boron motifs characterized by distinctive geometries and bonding, particularly those heretofore unobserved in pure boron clusters. In this study, we present a perfect (no defects) boron framework manifesting an inherently high-symmetry, bowl-like architecture, denoted as MB16 - (M=Sc, Y, La). In MB16 -, the B16 is coordinated to M atoms along the C5v-symmetry axis. The bowl-shaped MB16 - structure is predicted to be the lowest-energy structure with superior stability, owing to its concentric (2 π+10 π) dual π aromaticity. Notably, the C5v-symmetry bowl-like B16 - is profoundly stabilized through the doping of an M atom, facilitated by strong d-pπ interactions between M and boron motifs, in conjunction with additional electrostatic stabilization by an electron transfer from M to the boron motifs. This concerted interplay of covalent and electrostatic interactions between M and bowl-like B16 renders MB16 - a species of exceptional thermodynamic stability, thus making it a viable candidate for gas-phase experimental detection.

16.
Eur Arch Otorhinolaryngol ; 281(6): 3071-3082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584217

ABSTRACT

PURPOSE: To establish two nomograms to quantify the risk of lung metastasis (LM) in laryngeal carcinoma (LC) and predict the overall survival of LC patients with LM. METHODS: Totally 9515 LC patients diagnosed histologically from 2000 to 2019 were collected from the Surveillance, Epidemiology, and End Results database. The independent diagnostic factors for LM in LC patients and prognostic factors for LC patients with LM were identified by logistic and Cox regression analysis, respectively. Nomograms were established based on regression coefficients and evaluated by receiver operating characteristic curve, calibration curves, and decision curve analysis. RESULTS: Patients with supraglottis, higher pathological grade, higher N stage, and distant metastasis (bone, brain, or liver) were more likely to have LM (P < 0.05). Chemotherapy, surgery and radiotherapy were independent factors of the overall survival of LC patients with LM (P < 0.05). The area under curve of diagnostic nomogram were 0.834 and 0.816 in the training and validation cohort respectively. For the prognostic nomogram, the area under curves of 1-, 2-, and 3-years were 0.735, 0.734, and 0.709 in the training cohort and 0.705, 0.803, and 0.809 in the validation cohort. The calibration curves and decision curve analysis indicated good performance of the nomograms. CONCLUSION: Distant metastasis (bone, brain, or liver) and N stage should be considered for prediction of LM in LC patients. Chemotherapy is the most significant influencing prognostic factor improving the survival of LC patients with LM. Two nomograms may benefit for providing better precautionary measures and treatment decision.


Subject(s)
Laryngeal Neoplasms , Lung Neoplasms , Nomograms , SEER Program , Humans , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/therapy , Laryngeal Neoplasms/mortality , Laryngeal Neoplasms/diagnosis , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Lung Neoplasms/diagnosis , Middle Aged , Prognosis , Aged , Neoplasm Staging , ROC Curve , Adult , Survival Rate
17.
Orphanet J Rare Dis ; 19(1): 155, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605407

ABSTRACT

BACKGROUND: Glycogen storage disease type Ib (GSD Ib) is a rare disorder characterized by impaired glucose homeostasis caused by mutations in the SLC37A4 gene. It is a severe inherited metabolic disease associated with hypoglycemia, hyperlipidemia, lactic acidosis, hepatomegaly, and neutropenia. Traditional treatment consists of feeding raw cornstarch which can help to adjust energy metabolism but has no positive effect on neutropenia, which is fatal for these patients. Recently, the pathophysiologic mechanism of the neutrophil dysfunction and neutropenia in GSD Ib has been found, and the treatment with the SGLT2 inhibitor empaglifozin is now well established. In 2020, SGLT2 inhibitor empagliflozin started to be used as a promising efficient remover of 1,5AG6P in neutrophil of GSD Ib patients worldwide. However, it is necessary to consider long-term utility and safety of a novel treatment. RESULTS: In this study, we retrospectively examined the clinical manifestations, biochemical examination results, genotypes, long-term outcomes and follow-up of thirty-five GSD Ib children who visited our department since 2009. Fourteen patients among them underwent empagliflozin treatment since 2020. This study is the largest cohort of pediatric GSD Ib patients in China as well as the largest cohort of pediatric GSD Ib patients treated with empagliflozin in a single center to date. The study also discussed the experience of long-term management on pediatric GSD Ib patients. CONCLUSION: Empagliflozin treatment for pediatric GSD Ib patients is efficient and safe. Increase of urine glucose is a signal for pharmaceutical effect, however attention to urinary infection and hypoglycemia is suggested.


Subject(s)
Benzhydryl Compounds , Glycogen Storage Disease Type I , Sodium-Glucose Transporter 2 Inhibitors , Child , Humans , Antiporters , Follow-Up Studies , Glucose , Glucosides , Glycogen Storage Disease Type I/drug therapy , Hypoglycemia , Monosaccharide Transport Proteins/genetics , Neutropenia , Retrospective Studies , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
18.
J Microbiol Biotechnol ; 34(4): 774-782, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38668684

ABSTRACT

This study aimed to elucidate the anti-colon cancer mechanism of ginsenoside Rg1 in vitro and in vivo. Cell viability rate was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tetrazolium assay. The inhibitory effect of ginsenoside Rg1 against CT26 cell proliferation gradually increased with increasing concentration. The in vivo experiments also demonstrated an antitumor effect. The monodansylcadaverine (MDC), transmission electron microscopy (TEM), and expression of autophagy marker proteins confirmed that ginsenoside Rg1 induced autophagy in vitro. Ginsenoside Rg1 induced autophagy death of CT26 cells, but this effect could be diminished by autophagy inhibitor (3-methyladenine, 3-MA). Additionally, in a xenograft model, immunohistochemical analysis of tumor tissues showed that the LC3 and Beclin-1 proteins were highly expressed in the tumors from the ginsenoside Rg1-treated nude mice, confirming that ginsenoside Rg1 also induced autophagy in vivo. Furthermoer, both in vivo and in vitro, the protein expressions of p-Akt, p-mTOR, and p-p70S6K were inhibited by ginsenoside Rg1, which was verified by Akt inhibitors. These results indicated that the mechanism of ginsenoside Rg1 against colon cancer was associated with autophagy through inhibition of the Akt/mTOR/p70S6K signaling pathway.


Subject(s)
Autophagy , Colorectal Neoplasms , Ginsenosides , Mice, Inbred BALB C , Mice, Nude , Proto-Oncogene Proteins c-akt , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction , TOR Serine-Threonine Kinases , Ginsenosides/pharmacology , Autophagy/drug effects , Animals , TOR Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Mice , Signal Transduction/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Cell Proliferation/drug effects , Humans , Xenograft Model Antitumor Assays , Cell Survival/drug effects , Beclin-1/metabolism , Antineoplastic Agents/pharmacology
19.
Int J Biol Macromol ; 268(Pt 1): 131781, 2024 May.
Article in English | MEDLINE | ID: mdl-38657924

ABSTRACT

Alternative splicing is a crucial regulator in stem cell biology, intricately influencing the functions of various biological macromolecules, particularly pre-mRNAs and the resultant protein isoforms. This regulatory mechanism is vital in determining stem cell pluripotency, differentiation, and proliferation. Alternative splicing's role in allowing single genes to produce multiple protein isoforms facilitates the proteomic diversity that is essential for stem cells' functional complexity. This review delves into the critical impact of alternative splicing on cellular functions, focusing on its interaction with key macromolecules and how this affects cellular behavior. We critically examine how alternative splicing modulates the function and stability of pre-mRNAs, leading to diverse protein expressions that govern stem cell characteristics, including pluripotency, self-renewal, survival, proliferation, differentiation, aging, migration, somatic reprogramming, and genomic stability. Furthermore, the review discusses the therapeutic potential of targeting alternative splicing-related pathways in disease treatment, particularly focusing on the modulation of RNA and protein interactions. We address the challenges and future prospects in this field, underscoring the need for further exploration to unravel the complex interplay between alternative splicing, RNA, proteins, and stem cell behaviors, which is crucial for advancing our understanding and therapeutic approaches in regenerative medicine and disease treatment.


Subject(s)
Alternative Splicing , RNA Precursors , Stem Cells , Humans , RNA Precursors/genetics , RNA Precursors/metabolism , Animals , Stem Cells/metabolism , Stem Cells/cytology , Cell Differentiation/genetics
20.
Eur J Histochem ; 68(2)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656259

ABSTRACT

This study investigated the impact of resveratrol on abnormal metabolic remodeling in atrial fibrillation (AF) and explored potential molecular mechanisms. An AF cell model was established by high-frequency electrical stimulation of HL-1 atrial muscle cells. Resveratrol concentrations were optimized using CCK-8 and flow cytometry. AF-induced increases in ROS and mitochondrial calcium, along with decreased adenosine triphosphate (ATP) and mitochondrial membrane potential, were observed. Resveratrol mitigated these changes and maintained normal mitochondrial morphology. Moreover, resveratrol acted through the SIRT3-dependent pathway, as evidenced by its ability to suppress AF-induced acetylation of key metabolic enzymes. SIRT3 overexpression controls acetylation modifications, suggesting its regulatory role. In conclusion, resveratrol's SIRT3-dependent pathway intervenes in AF-induced mitochondrial dysfunction, presenting a potential therapeutic avenue for AF-related metabolic disorders. This study sheds light on the role of resveratrol in mitigating AF-induced mitochondrial remodeling and highlights its potential as a novel treatment for AF.


Subject(s)
Atrial Fibrillation , Resveratrol , Sirtuin 3 , Resveratrol/pharmacology , Sirtuin 3/metabolism , Atrial Fibrillation/metabolism , Atrial Fibrillation/drug therapy , Animals , Mice , Cell Line , Signal Transduction/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondria, Heart/metabolism , Mitochondria, Heart/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...