Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 9(9): 1024-1034, 2021 09.
Article in English | MEDLINE | ID: mdl-34193462

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are MR1-restricted innate-like T cells that recognize non-peptide antigens including riboflavin derivates. Although in vitro-activated MAIT cells show antitumor activity, the in vivo role of MAIT cells in cancer is still unclear. Here, we have shown that MAIT cells have antitumor function in vivo when activated by a combination of the synthetic riboflavin synthesis pathway-derived antigen 5-OP-RU [5-(2-oxopropylideneamino)-6-D-ribitylaminouracil] and the Toll-like receptor 9 (TLR9) agonist CpG. Coadministration of 5-OP-RU and CpG induced strong systemic in vivo expansion and activation of MAIT cells with high CD69 expression, pronounced effector memory phenotype, and upregulated levels of effector molecules including IFNγ, granzyme B, and perforin. Activated and expanded MAITs induced a potent and broad antitumor immune response in murine models of liver metastasis and hepatocellular carcinoma, lung metastasis, and subcutaneous tumors in two different mouse strains. Such tumor inhibition was absent in MAIT-deficient Mr1 -/- mice. CRISPR/Cas9-mediated MR1 knockout in tumor cells did not affect efficacy of this MAIT-directed immunotherapy, pointing toward an indirect mechanism of action. Our findings suggest that MAIT cells are an attractive target for cancer immunotherapy.See related Spotlight by Lantz, p. 996.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Lymphocyte Activation/immunology , Minor Histocompatibility Antigens/metabolism , Mucosal-Associated Invariant T Cells/drug effects , Neoplasms/drug therapy , Animals , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , CRISPR-Cas Systems , Cell Line, Tumor , Female , Histocompatibility Antigens Class I/genetics , Humans , Lectins, C-Type , Male , Mice , Minor Histocompatibility Antigens/genetics , Mucosal-Associated Invariant T Cells/metabolism , Neoplasms/metabolism , Ribitol/administration & dosage , Ribitol/analogs & derivatives , Riboflavin/biosynthesis , Riboflavin/chemistry , Riboflavin/pharmacology , Uracil/administration & dosage , Uracil/analogs & derivatives
2.
Cancer Discov ; 11(5): 1248-1267, 2021 05.
Article in English | MEDLINE | ID: mdl-33323397

ABSTRACT

Gut dysbiosis is commonly observed in patients with cirrhosis and chronic gastrointestinal disorders; however, its effect on antitumor immunity in the liver is largely unknown. Here we studied how the gut microbiome affects antitumor immunity in cholangiocarcinoma. Primary sclerosing cholangitis (PSC) or colitis, two known risk factors for cholangiocarcinoma which promote tumor development in mice, caused an accumulation of CXCR2+ polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC). A decrease in gut barrier function observed in mice with PSC and colitis allowed gut-derived bacteria and lipopolysaccharide to appear in the liver and induced CXCL1 expression in hepatocytes through a TLR4-dependent mechanism and an accumulation of CXCR2+ PMN-MDSCs. In contrast, neomycin treatment blocked CXCL1 expression and PMN-MDSC accumulation and inhibited tumor growth even in the absence of liver disease or colitis. Our study demonstrates that the gut microbiome controls hepatocytes to form an immunosuppressive environment by increasing PMN-MDSCs to promote liver cancer. SIGNIFICANCE: MDSCs have been shown to be induced by tumors and suppress antitumor immunity. Here we show that the gut microbiome can control accumulation of MDSCs in the liver in the context of a benign liver disease or colitis.See related commentary by Chagani and Kwong, p. 1014.This article is highlighted in the In This Issue feature, p. 995.


Subject(s)
Cholangiocarcinoma/pathology , Gram-Negative Bacteria/physiology , Hepatocytes/physiology , Liver Neoplasms/pathology , Myeloid-Derived Suppressor Cells/physiology , Animals , Disease Models, Animal , Gastrointestinal Microbiome , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...