Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 413, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760721

ABSTRACT

BACKGROUND: Styrax tonkinensis (Pierre) Craib ex Hartwich faces challenges in expanding in the south provinces of Yangtze River region due to climate extremes like flood-drought abrupt alternation (FDAA) caused by global warming. Low tolerance to waterlogging and drought restricts its growth in this area. To study its antioxidant system and molecular response related to the peroxisome pathway under FDAA, we conducted experiments on two-year-old seedlings, measuring growth indexes, reactive oxygen species content, antioxidant enzyme activity, and analyzing transcriptomes under FDAA and drought (DT) conditions. RESULTS: The physiological results indicated a reduction in water content in roots, stems, and leaves under FDAA conditions. The most significant water loss, amounting to 15.53% was observed in the leaves. Also, ROS accumulation was predominantly observed in leaves rather than roots. Through transcriptome analysis, we assembled a total of 1,111,088 unigenes (with a total length of 1,111,628,179 bp). Generally, SOD1 and CAT genes in S. tonkinensis seedlings were up-regulated to scavenge ROS. Conversely, the MPV17 gene exhibited contrasting reaction with up-regulation in leaves and down-regulation in roots, leading to increased ROS accumulation in leaves. CHS and F3H were down-regulated, which did not play an essential role in scavenging ROS. Moreover, the down-regulation of PYL, CPK and CALM genes in leaves may not contribute to stomatal closure, thereby causing continuous water loss through transpiration. Whereas, the decreased root vigor during the waterlogging phase and up-regulated CPK and CALM in roots posed obstacles to water absorption by roots. Additionally, the DEGs related to energy metabolism, including LHCA and LHCB, were negatively regulated. CONCLUSIONS: The ROS generation triggered by MPV17 genes was not the main reason for the eventual mortality of the plant. Instead, plant mortality may be attributed to water loss during the waterlogging phase, decreased root water uptake capacity, and continued water loss during the subsequent drought period. This study establishes a scientific foundation for comprehending the morphological, physiological, and molecular facts of S. tonkinensis under FDAA conditions.


Subject(s)
Antioxidants , Droughts , Floods , Gene Expression Profiling , Seedlings , Seedlings/genetics , Seedlings/physiology , Antioxidants/metabolism , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...