Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(2): e0296757, 2024.
Article in English | MEDLINE | ID: mdl-38306367

ABSTRACT

Ticks are important vectors of zoonotic diseases and play a major role in the circulation and transmission of many rickettsial species. The aim of this study was to investigate the carriage of Candidatus Rickettsia tarasevichiae (CRT) in a total of 1168 ticks collected in Inner Mongolia to elucidate the potential public health risk of this pathogen, provide a basis for infectious disease prevention, control and prediction and contribute diagnostic ideas for clinical diseases that present with fever in populations exposed to ticks. A total of four tick species, Haemaphysalis concinna (n = 21), Dermacentor nuttalli (n = 122), Hyalomma marginatum (n = 148), and Ixodes persulcatus (n = 877), were collected at nine sampling sites in Inner Mongolia, China, and identified by morphological and molecular biological methods. Reverse transcription PCR targeting the 16S ribosomal RNA (rrs), gltA, groEL, ompB and Sca4 genes was used to detect CRT DNA. Sequencing was used for pathogen species confirmation. The molecular epidemiological analysis showed that three species of ticks were infected with CRT, and the overall positive rate was as high as 42%. The positive rate of I. persulcatus collected in Hinggan League city was up to 96%, and that of I. persulcatus collected in Hulun Buir city was 50%. The pool positive rates of D. nuttalli and H. marginatum collected in Bayan Nur city and H. concinna collected in Hulun Buir city were 0%, 28% and 40%, respectively. This study revealed the high prevalence of CRT infection in ticks from Inner Mongolia and the first confirmation of CRT detected in H. marginatum in China. The wide host range and high infection rate in Inner Mongolia may dramatically increase the exposure of CRT to humans and other vertebrates. The role of H. marginatum in the transmission of rickettsiosis and its potential risk to public health should be further considered.


Subject(s)
Ixodes , Ixodidae , Rickettsia Infections , Rickettsia , Humans , Animals , Ixodidae/microbiology , Rickettsia/genetics , Ixodes/microbiology , Rickettsia Infections/microbiology , Zoonoses
2.
Parasite ; 30: 58, 2023.
Article in English | MEDLINE | ID: mdl-38084939

ABSTRACT

Ticks can carry multiple pathogens, and Inner Mongolia's animal husbandry provides excellent environmental conditions for ticks. This study characterized the microbiome of ticks from different geographical locations in Inner Mongolia; 905 Dermacentor nuttalli and 36 Ixodes persulcatus were collected from sheep in three main pasture areas and from bushes within the forested area. Mixed DNA samples were prepared from three specimens from each region and tick species. Microbial diversity was analyzed by 16S rRNA sequencing, and α and ß diversity were determined. The predominant bacterial genera were Rickettsia (54.60%), including Rickettsiales bacterium Ac37b (19.33%) and other Rickettsia (35.27%), Arsenophonus (11.21%), Candidatus Lariskella (10.84%), and Acinetobacter (7.17%). Rickettsia bellii was identified in I. persulcatus, while Rickettsiales bacterium Ac37b was found in D. nuttalli from Ordos and Chifeng. Potential Rickettsia and Anaplasma coinfections were observed in the Ordos region. Tick microbial diversity analysis in Inner Mongolia suggests that sheep at the sampling sites were exposed to multiple pathogens.


Title: Diversité microbienne des tiques et nouvelle espèce de Rickettsia du groupe du typhus (bactérie Rickettsiales Ac37b) en Mongolie intérieure, Chine. Abstract: Les tiques peuvent être porteuses de plusieurs agents pathogènes et l'élevage en Mongolie intérieure offre d'excellentes conditions environnementales pour les tiques. Cette étude a caractérisé le microbiome des tiques de différentes zones géographiques de Mongolie intérieure; 905 Dermacentor nuttalli et 36 Ixodes persulcatus ont été collectés sur des moutons dans trois principales zones de pâturage et dans des buissons de la zone forestière. Des échantillons d'ADN mixtes ont été préparés à partir de trois spécimens de chaque région et espèce de tique. La diversité microbienne a été analysée par séquençage de l'ARNr 16S et la diversité α et ß a été déterminée. Les genres bactériens prédominants étaient les Rickettsia (54,60 %), dont la bactérie Rickettsiales Ac37b (19,33 %) et d'autres Rickettsia (35,27 %), Arsenophonus (11,21 %), Candidatus Lariskella (10,84 %) et Acinetobacter (7,17 %). Rickettsia bellii a été identifiée chez I. persulcatus, tandis que la bactérie Rickettsiales Ac37b a été trouvée chez D. nuttalli d'Ordos et Chifeng. Des co-infections potentielles à Rickettsia et Anaplasma ont été observées dans la région d'Ordos. L'analyse de la diversité microbienne des tiques en Mongolie intérieure montre que les moutons présents sur les sites d'échantillonnage sont exposés à plusieurs agents pathogènes.


Subject(s)
Ixodes , Rickettsia , Sheep Diseases , Typhus, Epidemic Louse-Borne , Animals , Sheep , Rickettsiales/genetics , RNA, Ribosomal, 16S/genetics , Rickettsia/genetics , Ixodes/microbiology , China/epidemiology , Sheep Diseases/epidemiology
3.
Biochem J ; 480(21): 1753-1766, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37903000

ABSTRACT

Phloroglucinol (1,3,5-trihydroxybenzene) is an important intermediate in the degradation of flavonoids and tannins by anaerobic bacteria. Recent studies have shed light on the enzymatic mechanism of phloroglucinol degradation in butyrate-forming anaerobic bacteria, including environmental and intestinal bacteria such as Clostridium and Flavonifractor sp. Phloroglucinol degradation gene clusters have also been identified in other metabolically diverse bacteria, although the polyphenol metabolism of these microorganisms remain largely unexplored. Here, we describe biochemical studies of polyphenol degradation enzymes found in the purple non-sulfur bacterium Rubrivivax gelatinosus IL144, an anaerobic photoheterotroph reported to utilize diverse organic compounds as carbon sources for growth. In addition to the phloroglucinol reductase and dihydrophloroglucinol cyclohydrolase that catalyze phloroglucinol degradation, we characterize a Mn2+-dependent phloretin hydrolase that catalyzes the cleavage of phloretin into phloroglucinol and phloretic acid. We also report a Mn2+-dependent decarboxylase (DeC) that catalyzes the reversible decarboxylation of 2,4,6-trihydroxybenzoate to form phloroglucinol. A bioinformatics search led to the identification of DeC homologs in diverse soil and gut bacteria, and biochemical studies of a DeC homolog from the human gut bacterium Flavonifractor plautii demonstrated that it is also a 2,4,6-trihydroxybenzoate decarboxylase. Our study expands the range of enzymatic mechanisms for phloroglucinol formation, and provides further biochemical insight into polyphenol metabolism in the anaerobic biosphere.


Subject(s)
Carboxy-Lyases , Polyphenols , Humans , Polyphenols/metabolism , Bacteria/metabolism , Phloroglucinol/metabolism , Phloretin/metabolism , Carboxy-Lyases/metabolism
4.
RSC Adv ; 12(21): 13393-13400, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35520117

ABSTRACT

In the current work, a series of molybdenum disulfide composite MCNTs@Cu@MoS2 materials with high hydrogen evolution performance are prepared. In the hydrogen evolution reaction, their overpotential is as low as 225 mV at a current density of 10 mA cm-2 in 1 M H2SO4 as electrolyte solution. This excellent catalytic activity has been ascribed to its lower electrical impedance and high double layer capacitance. The encapsulation of copper nanoparticles into MoS2 crystals significantly reduces their resistance, enhancing the electron transfer rate during water electrolysis. Thereby, the introduction of conductive nanoparticles into semi-conductive catalyst crystals would be an efficient measure to improve their electrochemical catalytic activity in the hydrogen evolution reaction.

5.
J Mater Chem B ; 8(47): 10686-10699, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33156324

ABSTRACT

Near-infrared dyes possess the qualities of lower interference with biological autofluorescence, low photon scattering, and deep tissue penetration, and are being increasingly involved in the development of biomaterials for sensing and precision medicine. However, dyes usually suffer from the disadvantages of poor water solubility and photobleaching, factors that limit their application in vivo. The introduction of supramolecular ensembles can provide an ideal solution. This review presents recently developed supramolecular ensembles modified by near-infrared dyes. Compared with small-molecule fluorophores, the specific size of a supramolecular-based fluorophore endows it with longer circulation time in the bloodstream, increasing its chances of reaching a specific target. In addition, the construction of supramolecule-based fluorophores with versatile functions can be achieved by simple encapsulation or doping, instead of by complicated chemical synthesis. Thus, supramolecular-complex-based fluorophores offer high potential in diagnosis and therapy. This review outlines four different species of near-infrared dye based ensembles in terms of their method of formation, including simple encapsulation or doping and copolymerisation. Recently, a new technology has employed modified fluorophores for in situ self-assembly that form supramolecular ensembles at a specific position, thus solving the problem of poor uptake of nanoparticles by cells, and is included in this review. Finally, the future of this field is considered.


Subject(s)
Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Nanoparticles/chemistry , Nanoparticles/metabolism , Optical Imaging/methods , Animals , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Fluorescent Dyes/administration & dosage , Humans , Nanoparticles/administration & dosage , Photons , Polymers/administration & dosage , Polymers/chemical synthesis , Polymers/metabolism , Spectroscopy, Near-Infrared/methods
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 228: 117735, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31757698

ABSTRACT

Rapid and accurate diagnosis of methicillin-resistant staphylococcus aureus (MRSA) is vital for patient treatment, control of infection and monitoring epidemiology. Penicillin binding proteins (PBP2a), as an important marker protein of MRSA, has been proposed as the screening test target for tolerant bacteria of MRSA. However, current technologies based on PBP2a activity or PBP2a immunoassays were suboptimal specificity and sensitivity. In this report, the selection and characterization of DNA aptamers that binds to PBP2a was described. The DNA aptamer is with high affinity and selectivity to binding with PBP2a. Furthermore, utilizing the switched mimicking peroxidase for gold nanoparticles loaded graphene oxide (GO/Au) nanomaterials based on the effect between GO/Au and DNA, a powerful strategy was set out for designing aptamer-based colorimetric biosensor for detection of PBP2a. In this strategy, the employment of biosensor based on GO/Au and PBP2a aptamer greatly improved the detection sensitivity and selectivity with limit of detection as low as 20 nM. Accordingly, the reversible nanozyme inhibition/activation approach may be universally applicable for the biomedical diagnosis.


Subject(s)
Aptamers, Nucleotide/chemistry , Bacterial Proteins/analysis , Biosensing Techniques/methods , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Penicillin-Binding Proteins/analysis , Colorimetry/methods , Gold/chemistry , Graphite/chemistry , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Staphylococcal Infections/microbiology
7.
Eur J Med Chem ; 178: 329-340, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31200235

ABSTRACT

A novel series of 6-substituted pyrrolo[2,3-d]pyrimidines with reversed amide moieties from the lead compound 1a were designed and synthesized as nonclassical antifolates and as potential antitumor agents. Target compounds 1-9 were successfully obtained through two sequential condensation reactions from the key intermediate 2-amino-6-(2-aminoethyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one. In preliminary antiproliferation assay, all compounds demonstrated submicromolar to nanomolar inhibitory effects against KB tumor cells, whereas compounds 1-3 also exhibited nanomolar antiproliferative activities toward SW620 and A549 cells. In particular, compounds 1-3 were significantly more potent than the positive control methotrexate (MTX) and pemetrexed (PMX) to A549 cells. The growth inhibition induced cell cycle arrest at G1-phase with S-phase suppression. Along with the results of nucleoside protection assays, inhibition assays of dihydrofolate reductase (DHFR) clearly elucidated that the intracellular target of the designed compounds was DHFR. Molecular modeling studies suggested two binding modes of the target compounds with DHFR.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Folic Acid Antagonists/pharmacology , Folic Acid/metabolism , Pyrimidines/pharmacology , Pyrroles/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Folic Acid Antagonists/chemical synthesis , Folic Acid Antagonists/chemistry , Humans , KB Cells , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...