Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale ; 14(5): 1921-1928, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35048943

ABSTRACT

Effective lasing mode control and unidirectional coupling of semiconductor microlasers are vital to boost their applications in optical interconnects, on-chip communication, and bio-sensors. In this study, symmetric and asymmetric GaN floating microdisks and coupled cavities are designed based on the Vernier effect and then fabricated via electron beam lithography, dry-etching of GaN, and isotropic wet-etching of silicon (Si) support. The lasing properties, including model number, threshold, radiation direction, and mode switching method, are studied. Compared to its symmetrical structure, both experimental and simulated optical field distributions indicate that the lasing outgoing direction can be controlled with a vertebral angle on the disk. The whispering gallery mode (WGM) lasing of the structures, with a quasi-single-mode lasing at 374.36 nm, a dual-mode lasing at 372.36 nm, and 373.64 nm at coupled cavities, are obtained statically. More interestingly, a switching between dual-mode and single-mode can be achieved dynamically via a thermal-induced mode shifting.

2.
Nanoscale ; 10(37): 17852-17857, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30221280

ABSTRACT

Zinc (Zn) surface plasmons (SPs) have been widely reported for their impressive performance in improving the optical properties of semiconductors. Zn is an effective metal with SPs response in the ultraviolet region, but the disadvantage of strong metal activity limits the application mentioned above. Here, in order to ensure the stability of metal Zn, ZnO/Zn microspheres were synthesized by an one-step laser ablation method to distribute Zn nanoparticles simultaneously on both inner and outer surfaces of ZnO microspheres. Lasing performance enhancement and a lower threshold were obtained in the composite which originates from the coupling between Zn SPs and the excitation light source. Accompanied by the lasing emission measurements, the coupling mechanism was explained through time-resolved photoluminescence spectroscopy (TRPL) for the samples by rapid annealing in situ. This work displays the results of lasing enhancement and the physical process of Zn SPs resonance in the ZnO/Zn microsphere.

SELECTION OF CITATIONS
SEARCH DETAIL